Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy:
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
=>\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Hay \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
Vậy A > B
20092010+20092009
=20092009.2009+20092009
=20092009(2009+1)
=20092009.2010
Mà 20102010=20102009.2010
nên 20092010+20092009 < 20102010
Xong rồi đó bạn
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}\)
\(=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4\)
ta có :
\(\frac{2008}{2009}< 1\)
\(\frac{2009}{2010}< 1\)
\(\frac{2010}{2011}< 1\)
\(\frac{2011}{2012}< 1\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}< 1+1+1+1\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}< 4\)
vậy ....................
2008/2009+2009/2010+2010/2011+2011/2008 4
=2008/2008=1 4
Vì 1<4 nên 2008/2009+2009/2010+2011/2008 < 4
20092010 + 20092009 = 20092009.(2009 + 1) = 20092009.2010
20102010 = 20102009.2010
Vì 20092009 < 20102009
=> 20092009.2010 < 20102009.2010
=> 20092010 + 20092009 < 20102010