\(\frac{2017}{2018}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Ta có:

\(2-A=1-\frac{2017}{2018}+1-\frac{2071}{2081}\)

\(=\frac{1}{2018}+\frac{10}{2081}\)

\(2-B=1-\frac{2015}{2016}+1-\frac{2051}{2061}\)

\(=\frac{1}{2016}+\frac{10}{2061}\)

Ta có: 

\(\frac{1}{2016}>\frac{1}{2018};\frac{10}{2061}>\frac{10}{2081}\)

=> 2-A <2-B

=> A > B

Ai đủ 14 điểm hỏi đáp r thấy mình đúng tình tk giùm với, chưa đủ 14 điểm thấy câu hỏi hay muốn tk cũng k được :(

7 tháng 11 2017

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"

17 tháng 7 2017

Ta có : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)

Mà : \(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1;\left(\frac{2015}{2016}+\frac{1}{2014}\right)>1;\frac{2014}{2014}=1\)

Nên : \(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)\(>1+1+1=3\)

17 tháng 7 2017

Ta có:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}\)

Mà:\(\left(\frac{2014}{2015}+\frac{1}{2014}\right)>1:\left(\frac{2015}{2016}+\frac{1}{2014}\right)>\)\(1:\frac{2014}{2014}=1\)

Nên:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}=\left(\frac{2014}{2015}+\frac{1}{2014}\right)\)\(+\left(\frac{2015}{2016}+\frac{1}{2014}\right)+\frac{2014}{2014}>1+1+1=3\)

1 tháng 11 2017

\(N=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)

\(N=1+\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+\left(\frac{3}{2014}+1\right)+...+\left(\frac{2015}{2}+1\right)\)

\(N=\frac{2017}{2017}+\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...+\frac{2017}{2}\)

\(N=2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{M}{N}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}{2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)}=\frac{1}{2017}\)

2 tháng 11 2017

hay lam

18 tháng 10 2017

Ta có \(a=\frac{2015b}{2016};c=\frac{2017b}{2016}\)

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

   \(=4\left(\frac{2015b}{2016}-b\right)\left(b-\frac{2017b}{2016}\right)-\left(\frac{2017b}{2016}-\frac{2015b}{2016}\right)^2\)

   \(=4\left(-\frac{1b}{2016}\right)\left(-\frac{1b}{2016}\right)-\left(\frac{2b}{2016}\right)^2\)

    \(=2^2\left(\frac{1b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=\left(\frac{2b}{2016}\right)^2-\left(\frac{2b}{2016}\right)^2=0\)

18 tháng 10 2017

thay a=b=c=0 vào B ta được B=0 vậy ta sẽ chứng minh B=0

Đặt \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}=k\)

suy ra

\(\hept{\begin{cases}a=2015k\\b=2016k\\c=2017k\end{cases}}\)

vậy

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(B=4\left(2015k-2016k\right)\left(2016k-2017k\right)-\left(2017k-2015k\right)^2\)

\(B=4\left(-k\right)\left(-k\right)-\left(2k\right)^2\)

\(B=4k^2-4k^2\)

\(B=0\)

24 tháng 11 2016

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

  • nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

  • nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

26 tháng 11 2016

thanks you :)

15 tháng 8 2018

\(\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}+2018}{\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(=\frac{1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+2018}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}+\frac{2018}{1}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(=\frac{2018.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

= 2018