K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Ta có: \(2004A=\dfrac{2004^{2004}+2004}{2004^{2004}+1}=1+\dfrac{2003}{2004^{2004}+1}\)

\(2004B=\dfrac{2004^{2003}+2004}{2004^{2003}+1}=1+\dfrac{2003}{2004^{2003}+1}\)

\(\dfrac{2003}{2004^{2004}+1}< \dfrac{2003}{2004^{2003}+1}\Rightarrow1+\dfrac{2003}{2004^{2004}+1}< 1+\dfrac{2003}{2004^{2003}+1}\)

\(\Rightarrow2004A< 2004B\)

\(\Rightarrow A< B\)

Vậy A < B

15 tháng 4 2017

thanks you

27 tháng 7 2019

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B

Vậy A > B

Chắc sai =))

27 tháng 7 2019

\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)

\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)

có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)

\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)

\(\Rightarrow A< B\)

7 tháng 1 2018

Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1

2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A

=> A > B

Tk mk nha

7 tháng 1 2018

\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}=A\)

Vậy A > B

30 tháng 8 2016

Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath

2 tháng 3 2016

Có:

  1. 2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+1
  • ​2003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1​
  • Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003B
  • Nên A<B 
  • !!!!!!!!!!!
2 tháng 1 2018

Bạn làm sai rồi