\(3^{11}\)va  
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

A. \(\frac{3}{4}\) x \(\frac{8}{9}\)\(\frac{15}{16}\)x .... x \(\frac{899}{900}\)

\(\frac{1.3}{2^2}\) x \(\frac{2.4}{3^3}\)\(\frac{3.5}{4^2}\)x ... x \(\frac{29.31}{30^2}\)

\(\left(\frac{1.2.3...29}{2.3.4...30}\right).\left(\frac{3.4.5...31}{2.3.4...30}\right)\)

\(\frac{1}{30}.\frac{31}{2}\)\(\frac{31}{60}\)

B. 

\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{8}{24}+\frac{9}{24}-\frac{14}{24}=\frac{8+9-14}{24}=\frac{3}{24}=\frac{1}{8}\)

29 tháng 8 2017

bài khó quá giải cũng dài luôn

29 tháng 8 2017

\(Ai\)\(giúp\)\(mình\)\(bài\)\(kia\)\(đi\)

16 tháng 6 2017

a) \(\frac{13}{26}-\frac{1}{3}-\frac{1}{2}+\frac{7}{21}\)
\(=\frac{1}{2}-\frac{1}{3}-\frac{1}{2}+\frac{1}{3}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}\)
\(=0+0\)
\(=0\)

b) \(\left(\frac{-5}{12}+\frac{6}{11}\right)+\left(\frac{7}{17}+\frac{5}{17}+\frac{5}{12}\right)\)
\(=\frac{-5}{12}+\frac{6}{11}+\frac{7}{17}+\frac{5}{17}+\frac{5}{12}\)
\(=\left(\frac{-5}{12}+\frac{5}{12}\right)+\left(\frac{7}{17}+\frac{5}{17}\right)+\frac{6}{11}\)
\(=0+\frac{12}{17}+\frac{6}{11}\)
\(=\frac{132}{187}+\frac{102}{187}\)
\(=\frac{234}{187}\)

c) \(\left(\frac{13}{5}+\frac{7}{16}\right)-\left(\frac{11}{16}-\frac{12}{10}\right)\)
\(=\left(\frac{13}{5}+\frac{7}{16}\right)-\left(\frac{11}{16}-\frac{6}{5}\right)\)
\(=\frac{13}{5}+\frac{7}{16}-\frac{11}{16}+\frac{6}{5}\)
\(=\left(\frac{13}{5}+\frac{6}{5}\right)+\left(\frac{7}{16}-\frac{11}{16}\right)\)
\(=\frac{19}{5}+\left(\frac{-4}{16}\right)\)
\(=\frac{19}{5}-\frac{1}{4}\)
\(=\frac{76}{20}-\frac{5}{20}\)
\(=\frac{71}{20}\)

d) \(-\left(\frac{3}{10}-\frac{6}{11}\right)-\left(\frac{21}{30}-\frac{5}{11}\right)\)
\(=-\left(\frac{3}{10}-\frac{6}{11}\right)-\left(\frac{7}{10}-\frac{5}{11}\right)\)
\(=-\frac{3}{10}+\frac{6}{11}-\frac{7}{10}+\frac{5}{11}\)
\(= \left(-\frac{3}{10}-\frac{7}{10}\right)+\left(\frac{6}{11}+\frac{5}{11}\right)\)
\(=\frac{-10}{10}+\frac{11}{11}\)
\(=-1+1\)
\(=0\)

16 tháng 10 2019

Ta có : \(\frac{n+14}{n+3}=\frac{n+3+11}{n+3}=1+\frac{11}{n+3}\)

Vì \(\left(n+14\right)⋮\left(n+3\right)\)nên \(11⋮\left(n+3\right)\)hay \(\left(n+3\right)\)là \(Ư\left(11\right)=\left\{\pm1;\pm11\right\}\)

Tự lập bảng mà lm típ

26 tháng 11 2019

                                                                 Bài giải

a) Ta có : 

\(43^{43}-17^{17}=43^{40}\cdot43^3-17^{16}\cdot17=\left(43^4\right)^{10}\cdot43^3-\left(17^4\right)^4\cdot17=\overline{\left(...1\right)}^{10}\cdot\overline{\left(...3\right)}^3-\overline{\left(...1\right)}^4\cdot17\)

\(=\overline{\left(...1\right)}\cdot\overline{\left(...7\right)}-\overline{\left(...7\right)}=\overline{\left(...7\right)}-\overline{\left(...7\right)}=\overline{\left(...0\right)}\text{ }⋮\text{ }10\)

\(\Rightarrow\text{ ĐPCM}\)

6 tháng 1 2019

\(\frac{a+n}{b+n}=\frac{b\left(a+n\right)}{b\left(b+n\right)}=\frac{ab+bn}{b^2+bn}\)

\(\frac{a}{b}=\frac{a\left(b+n\right)}{b\left(b+n\right)}=\frac{ab+an}{b^2+bn}\)

2 phân thức cùng mẫu, ta so sánh tử số 

+) TH1 : a > b => an > bn

=> \(\frac{a}{b}>\frac{a+n}{b+n}\)

+) TH2 : a < b => an < bn

=> \(\frac{a}{b}< \frac{a+n}{b+n}\)

+) TH3 : a = b => an = bn

=> \(\frac{a}{b}=\frac{a+n}{b+n}\)

6 tháng 1 2019

Ta co: (a+n).b=a.b+n.b

(b+n).a=b.a+n.a

Xet tuong hop:

Th1: a>b

Voi a>b thi a.b+n.b<b.a+n.a 

​​a+n/b+n<a/b

Th2:b>a

Voi b>a thi a.b+b.a>b.a+n.a

a+n/b+n>a/b