Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(1=\sqrt{1}< \sqrt{50}\Rightarrow1-\sqrt{50}< 0\)
\(\Rightarrow\sqrt{\left(1-\sqrt{50}\right)^2}=\sqrt{50}-1>\sqrt{49}-1=7-1=6\)
Vậy \(\sqrt{\left(1-\sqrt{50}\right)^2}>6\)
bình phương 2 vế ta có:
vế 1 bằng 50+2=52
vế 2 bằng 50+ 10+ 2 = 62
vậy (1) < (2)
\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50
a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)
\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)
\(\sqrt{50+2}\)
\(=\sqrt{52}< 8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=8\)
\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)
\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)
\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)
\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)
\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)
So sánh gì thế em, em nhập đủ đề vào hi
a) \(\sqrt{27}+\sqrt{12}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(\Rightarrow\sqrt{27}+\sqrt{12}>8\)
b) \(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=7+1=8\)
=> \(\sqrt{50+2}< 8< \sqrt{50}+\sqrt{2}\)
\(\Rightarrow\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)