K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

\(5A=\frac{5^{2011}+5}{5^{2011}+1}=1+\frac{4}{5^{2011}+1}\)

\(5B=\frac{5^{2010}+5}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)

\(5B>5A\Rightarrow B>A\)

2 tháng 5 2019

Ta có:

A = \(\frac{5^{2010}+1}{5^{2011}+1}\)

5A = \(\frac{5^{2011}+5}{5^{2011}+1}\) = \(\frac{5^{2011}+1+4}{5^{2011}+1}\) = 1 + \(\frac{4}{5^{2011}+1}\)

B = \(\frac{5^{2009}+1}{5^{2010}+1}\)

5B = \(\frac{5^{2010}+5}{5^{2010}+1}\) = \(\frac{5^{2010}+1+4}{5^{2010}+1}\) = 1 + \(\frac{4}{5^{2010}+1}\)

Vì 1 + \(\frac{4}{5^{2011}+1}\) < \(\frac{4}{5^{2010}+1}\) => 5A < 5B

Vì 5A < 5B => A < B

21 tháng 4 2017

Ta có: \(5A=\frac{5^{2011}+5}{5^{2011}+1}=\frac{5^{2011}+1+4}{5^{2011}+1}=1+\frac{4}{5^{2011}+16}\)

\(5B=\frac{5^{2010}+5}{5^{2010}+1}=\frac{5^{2010}+1+4}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)

\(\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

21 tháng 4 2017

Ta có:

A = \(\frac{5^{2010}+1}{5^{2011}+1}\)

\(\Rightarrow5A=\frac{5.\left(5^{2010}+1\right)}{5^{2011}+1}\)\(=\frac{5^{2011}+5}{5^{2011}+1}=1+\frac{4}{5^{2011}+1}\)

B=\(\frac{5^{2009}+1}{5^{2010}+1}\)

\(\Rightarrow5B=\frac{5.\left(5^{2009}+1\right)}{5^{2010}+1}=\frac{5^{2010}+5}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)

Ta thấy \(5^{2011}+1>5^{2010}+1\)

\(\Rightarrow\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\)

\(\Rightarrow1+\frac{4}{5^{2011}+1}< 1+\frac{4}{5^{2010}+1}\)

Hay 5.A<5.B

Vậy A<B (đpcm)

3 tháng 4 2018

Ta có :

\(B=\frac{5^{2009}+1}{5^{2010}+1}=\frac{\left(5^{2009}+1\right).10}{\left(5^{2010}+1\right).10}=\frac{5^{2010}+10}{5^{2011}+10}\)

Ta thấy :

\(5^{2010}=5^{2010};1< 10\Rightarrow5^{2010}+1< 5^{2010}+10\)

\(5^{2011}=5^{2011};1< 10\Rightarrow5^{2011}+1< 5^{2011}+10\)

Suy ra : \(A< B\)

Vậy \(A< B\)

3 tháng 4 2018

\(A< 1\)

\(A< \frac{5^{2010}+1}{5^{2011}+1}\)

\(A< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)

\(A< \frac{5^{2010}+5}{5^{2011}+5}\)

\(A< \frac{5\left(5^{2009}+1\right)}{5\left(5^{2010}+1\right)}\)

\(A< \frac{5^{2009}+1}{5^{2010}+1}\)

\(A< B\)

10 tháng 5 2015

A = \(1+\frac{9^{2010}}{1+9+9^2+....+9^{2009}}\)\(1+1:\frac{1+9+9^2+....+9^{2009}}{9^{2010}}\)\(1+1:\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+\frac{1}{9^{2008}}+...+\frac{1}{9}\right)\)

B = \(1+\frac{5^{2010}}{1+5+5^2+....+5^{2009}}\)\(1+1:\frac{1+5+5^2+...+5^{2009}}{5^{2010}}\)\(1+1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Do \(\frac{1}{9^{2010}}<\frac{1}{5^{2010}}\) ; \(\frac{1}{9^{2009}}<\frac{1}{5^{2009}}\) ;.....; \(\frac{1}{9}<\frac{1}{5}\) 

=> \(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}<\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\)

=> 1:\(\left(\frac{1}{9^{2010}}+\frac{1}{9^{2009}}+...+\frac{1}{9}\right)>1:\left(\frac{1}{5^{2010}}+\frac{1}{5^{2009}}+...+\frac{1}{5}\right)\)

Vậy A > B

10 tháng 5 2015

có đúng đề không vậy 

 

 

 

 

 

8 tháng 5 2017

Đặt M = \(1+9+9^2+......+9^{2010}\)

\(9M=9+9^2+9^3+......+9^{2011}\)

\(9M-M=8M=9^{2011}-1\)

Đặt K = \(1+9+9^2+......+9^{2009}\)

\(9K=9+9^2+9^3+.....+9^{2010}\)

\(9K-K=8K=9^{2010}-1\)

\(\Rightarrow A=\frac{9^{2011}-1}{9^{2010}-1}\)

Đặt H=\(1+5+5^2+....+5^{2010}\)

\(5H=5+5^2+......+5^{2011}\)

\(5H-H=4H=5^{2011}-1\)

ĐẶT G = \(1+5+5^2+.......+5^{2009}\)

\(5G-G=4G=5^{2010}-1\)

\(\Rightarrow B=\frac{5^{2011}-1}{5^{2010}-1}\)

Rồi bạn so sánh sẽ ra ngay

12 tháng 1 2019

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}< 1\)

\(\Rightarrow B=\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(=\frac{2009.\left(2009^{2009}+1\right)}{2009.\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)

Suy ra : \(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2009}+1}{2009^{2010}+1}\) hay \(B< A\)

Vậy \(A>B\)

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

7 tháng 7 2017

Do 2009\(^{2010}\)-2 < 2009\(^{2011}\)-2 \(\Rightarrow\)B<1

Theo đề bài ta có: 

B= \(\frac{2009^{2010}-2}{2009^{2011}-2}\)\(\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}\)\(\frac{2009^{2010}+2009}{2009^{2011}+2009}\)\(\frac{2009.\left(1+2009^{2009}\right)}{2009.\left(1+2009^{2010}\right)}\)\(\frac{2009^{2009}+1}{2009^{2010}+1}\)= A \(\Rightarrow\)B<A