Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)
\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)
\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)
\(\Rightarrow-5< x< \frac{86}{105}\)
Vì \(x\in Z\left(gt\right)\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)
Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
1) Tìm x
\(\frac{11}{2}.x+\frac{1}{3}.x=1\)
\(\Rightarrow x\left(\frac{11}{2}+\frac{1}{3}\right)=1\)
\(\Rightarrow x\left(\frac{33}{6}+\frac{2}{6}\right)=1\)
\(\Rightarrow x.\frac{35}{6}=1\)
\(\Rightarrow x=\frac{6}{35}\)
2) So sánh
\(\frac{59}{40}< \frac{50}{31}\)( cái này bạn quy đồng là ra, mik chỉ ghi kq, bạn tự tính )
3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)
\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}\right)-\frac{1}{2}\)
\(=-\frac{1}{3}+\frac{3}{14}-\frac{1}{2}\)
\(=-\frac{13}{21}\)
1)\(\frac{11}{2}.x+\frac{1}{3}.x=1\)
\(x.\left(\frac{11}{2}+\frac{1}{3}=1\right)\)
\(x.\frac{35}{6}=1\)
\(x=1:\frac{35}{6}\)
\(x=\frac{6}{35}\)
2) Ta có:
\(\frac{59}{40}=\frac{1829}{1240}\)
\(\frac{50}{31}=\frac{2000}{1240}\)
Vì \(2000>1829\Rightarrow\frac{2000}{1240}>\frac{1829}{1240}\Rightarrow\frac{50}{31}>\frac{59}{40}\)
3)\(\frac{1}{3}+\frac{4}{7}-\frac{5}{14}-\frac{1}{2}-\frac{2}{3}\)
\(=\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{4}{7}-\frac{5}{14}-\frac{1}{2}\right)\)
\(=-\frac{1}{3}+\left(\frac{8}{14}-\frac{5}{14}-\frac{7}{14}\right)\)
\(=\frac{-1}{3}+\frac{-4}{14}\)
\(=\frac{-1}{3}+\frac{-2}{7}\)
\(=\frac{-7}{21}+\frac{-6}{21}\)
\(=\frac{-13}{21}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)
\(\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{4}{14}-\frac{2}{13}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{\frac{2}{6}+\frac{2}{14}-\frac{2}{26}}{\frac{4}{6}+\frac{4}{14}-\frac{4}{26}}\times\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{356}}{\frac{4}{4}-\frac{4}{16}+\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
\(=\frac{2\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}{4\left(\frac{1}{6}+\frac{1}{14}-\frac{1}{26}\right)}\times\frac{3\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{356}\right)}{4\left(\frac{1}{4}-\frac{1}{16}+\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
\(=\frac{2}{4}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{1}{2}\times\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}\)
\(=\frac{8}{8}=1\)
\(\frac{\frac{109}{3.7.13}}{\frac{361}{3.14.13}}\)\(\frac{\frac{153}{256}}{\frac{51}{64}}\)+5/8
=\(\frac{327}{722}\)+5/8
=\(\frac{3113}{2888}\)