Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 31^11 < 32^11 và 17^14 > 16^14
=> 32^11=(2^5)^11=2^55
=>16^14= (2^4)^14=2^56
Ta thấy : 55^56
=>2^55 < 2^56
=> 32^11 < 16^14
Tức : 31^11 < 17^14
Chúc bạn học tốt!
\(32^{11}=\left(2^5\right)^{11}=2^{55}\\ 16^{14}=\left(2^4\right)^{14}=2^{56}\\ Ta.có:2^{55}< 2^{56}\Rightarrow32^{11}< 16^{14}\\ Mà:31^{11}< 32^{11};16^{14}< 17^{14}\Rightarrow31^{11}< 17^{14}\)
b)10750 < 10850 = (4.27)50 = 2100. 3150 (1)
7375 > 7275 =(8.9)75 = 2225.3150 (2)
Nhưng 2100 .3150 < 2225. 3150 (3)
Từ (1), (2) và (3) suy ra: 10750 < 7375
555...3111...1 = 5 . 2007 + 3 + 1 . 2007
= 10035 + 3 + 2007
= 3 . 3345 + 3 + 3 . 669
= 3 . ( 3345 + 1 + 669 ) \(⋮\)3
=> 555...3111...1 là hợp số
a: 43/52>26/52=1/2=60/120
b: 17/68=1/4<1/3=35/105<35/103
c: \(\dfrac{2018\cdot2019-1}{2018\cdot2019}=1-\dfrac{1}{2018\cdot2019}\)
\(\dfrac{2019\cdot2020-1}{2019\cdot2020}=1-\dfrac{1}{2019\cdot2020}\)
2018*2019<2019*2020
=>-1/2018*2019<-1/2019*2020
=>\(\dfrac{2018\cdot2019-1}{2018\cdot2019}< \dfrac{2019\cdot2020-1}{2019\cdot2020}\)
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a) ta có: \(1-\frac{2012}{2013}=\frac{1}{2013}\)
\(1-\frac{2013}{2014}=\frac{1}{2014}\)
mà \(\frac{1}{2013}>\frac{1}{2014}\) nên \(\frac{2013}{2014}>\frac{2012}{2013}\)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}