K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)

\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)

Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1-\dfrac{1}{50}\) (**)

Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)

\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm

b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)

\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)

\(3VT=1-\dfrac{1}{64}< 1\)

\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)

22 tháng 7 2017

Thanks bạn nhìu nha!!!vuiyeu

18 tháng 8 2018

bn vào câu hỏi tương tự có nha!

chúc hok tốt

\(\frac{1}{4}=\frac{1}{2.2}< \frac{1}{1.2}=\frac{1}{2}-\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{16}< \frac{1}{2.4}=\frac{1}{4}-\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{36}< \frac{1}{4.6}=\frac{1}{8}-\frac{1}{12}\)

\(\Leftrightarrow\frac{1}{64}< \frac{1}{6.8}=\frac{1}{12}-\frac{1}{16}\)

\(\Leftrightarrow\frac{1}{100}< \frac{1}{8.10}=\frac{1}{16}-\frac{1}{20}\)

\(\Leftrightarrow\frac{1}{144}< \frac{1}{10.12}=\frac{1}{20}-\frac{1}{24}\)

\(\Leftrightarrow\frac{1}{196}< \frac{1}{12.14}=\frac{1}{24}-\frac{1}{28}\)

\(\Rightarrow\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{196}< \frac{1}{2}-\frac{1}{28}< \frac{1}{2}ĐPCM\)

a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)

\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)

mà \(400< 500\)

nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)

28 tháng 6 2016

Bạn vào phần câu hỏi tương tự, sẽ rõ đáp án ngay thôi. Vì dạng là như nhau mà ^^^

7 tháng 2 2017

Ta có :

\(\left(\frac{1}{16}\right)^{200}=\frac{1}{16^{200}}=\frac{1}{\left(2^4\right)^{200}}=\frac{1}{2^{800}}\)

Vì \(\frac{1}{2^{800}}>\frac{1}{2^{1000}}\) nên \(\left(\frac{1}{16}\right)^{200}>\frac{1}{2^{1000}}\)

7 tháng 2 2017

Bấm máy thì cả 2 đều = 0

=> (1/16)^200 = (1/2)^1000