Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(4VT=\dfrac{1}{2^2:2^2}+\dfrac{1}{4^2:2^2}+\dfrac{1}{6^2:2^2}+...+\dfrac{1}{100^2:2^2}\)
\(4VT=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\)
Lại có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\Rightarrow4VT-1< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)(*)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}\) (**)
Từ (*) và (**) \(\Rightarrow4VT< 2-\dfrac{1}{50}\)
\(\Rightarrow VT< \dfrac{1}{2}-\dfrac{1}{200}< VP\Rightarrow\) đpcm
b) Ta có: \(2VT=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\)
\(2VT+VT=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\)
\(3VT=1-\dfrac{1}{64}< 1\)
\(\Rightarrow VT< \dfrac{1}{3}\) (đpcm)
\(\frac{1}{4}=\frac{1}{2.2}< \frac{1}{1.2}=\frac{1}{2}-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{16}< \frac{1}{2.4}=\frac{1}{4}-\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{36}< \frac{1}{4.6}=\frac{1}{8}-\frac{1}{12}\)
\(\Leftrightarrow\frac{1}{64}< \frac{1}{6.8}=\frac{1}{12}-\frac{1}{16}\)
\(\Leftrightarrow\frac{1}{100}< \frac{1}{8.10}=\frac{1}{16}-\frac{1}{20}\)
\(\Leftrightarrow\frac{1}{144}< \frac{1}{10.12}=\frac{1}{20}-\frac{1}{24}\)
\(\Leftrightarrow\frac{1}{196}< \frac{1}{12.14}=\frac{1}{24}-\frac{1}{28}\)
\(\Rightarrow\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{196}< \frac{1}{2}-\frac{1}{28}< \frac{1}{2}ĐPCM\)
a: \(\left(-\dfrac{1}{16}\right)^{100}=\left(\dfrac{1}{16}\right)^{100}=\left(-\dfrac{1}{2}\right)^{400}\)
\(\left(-\dfrac{1}{2}\right)^{500}=\left(-\dfrac{1}{2}\right)^{500}\)
mà \(400< 500\)
nên \(\left(-\dfrac{1}{16}\right)^{100}< \left(-\dfrac{1}{2}\right)^{500}\)
Bạn vào phần câu hỏi tương tự, sẽ rõ đáp án ngay thôi. Vì dạng là như nhau mà ^^^
Ta có :
\(\left(\frac{1}{16}\right)^{200}=\frac{1}{16^{200}}=\frac{1}{\left(2^4\right)^{200}}=\frac{1}{2^{800}}\)
Vì \(\frac{1}{2^{800}}>\frac{1}{2^{1000}}\) nên \(\left(\frac{1}{16}\right)^{200}>\frac{1}{2^{1000}}\)