Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.13579/34567 = 40737/34567 = 34567+6170/34567
3.13580/34569 = 40740/34569 = 34569+6171/34569
vì : 34567+6170/34567 < 34569+6171/34569
nên: 3.13579/34567 < 3.13580/34569
vậy: 13579/34567 < 13580/34569
Ta có F < 1 nên
\(\dfrac{13580}{34569}< 1< \dfrac{13580+\left(-1\right)}{34569+\left(-1\right)}=\dfrac{13579}{34568}\)<\(\dfrac{13579}{34567}\)
Từ đó suy ra \(\dfrac{13580}{34569}< \dfrac{13579}{34567}\)hay\(\dfrac{13579}{34567}>\dfrac{13580}{34569}\)
Vậy E > F
B=\(\dfrac{10^9+1}{10^{10}+1}< \dfrac{10^5+1+9}{10^{10}+1+9}=\dfrac{10^9+10}{10^{10}+10}=\dfrac{10.\left(10^8+1\right)}{10\left(10^9+1\right)}\)
= A
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
M=\(\dfrac{1919\times171717}{191919\times1717}\) và N=\(\dfrac{18}{19}\)
Ta có :
M= \(\dfrac{1919\times171717}{191919\times1717}\)
M=\(\dfrac{19\times17}{19\times17}\)
M= 1
Mà N= \(\dfrac{18}{19}\)
Vì: 1>\(\dfrac{18}{19}\)
\(\Rightarrow\)\(\dfrac{1919\times171717}{191919\times1717}\) > \(\dfrac{18}{19}\)
\(\Rightarrow\)M > N
A=\(\dfrac{5^{12}+1}{5^{13}+1}\) và B =\(\dfrac{5^{11}+1}{5^{12}+1}\)
Ta có:
A=\(\dfrac{5^{12}+1}{5^{13}+1}\)
\(\Rightarrow\)5.A=5.\(\dfrac{5^{12}+1}{5^{13}+1}\)
=\(\dfrac{5.\left(5^{12}+1\right)}{5^{13}+1}\)
=\(\dfrac{5^{13}+6}{5^{13}+1}\)
=\(\dfrac{\left(5^{13}+1\right)+6}{5^{13}+1}\)
=\(\dfrac{5^{13}+1}{5^{13}+1}\) + \(\dfrac{6}{5^{13}+1}\)
= 1 + \(\dfrac{6}{5^{13}+1}\)
B=\(\dfrac{5^{11}+1}{5^{12}+1}\)
\(\Rightarrow\)5.B = 5.\(\dfrac{5^{11}+1}{5^{12}+1}\)
=\(\dfrac{5.\left(5^{11}+1\right)}{5^{12}+1}\)
=\(\dfrac{5^{12}+6}{5^{12}+1}\)
=\(\dfrac{\left(5^{12}+1\right)+5}{5^{12}+1}\)
=\(\dfrac{5^{12}+1}{5^{12}+1}\) + \(\dfrac{5}{5^{12}+1}\)
= 1 + \(\dfrac{5}{5^{12}+1}\)
Vì: \(5^{13}+1\) > \(5^{12}+1\)
\(\Rightarrow\) \(\dfrac{5}{5^{13}+1}\) < \(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 1+\(\dfrac{5}{5^{13}+1}\) < 1+\(\dfrac{5}{5^{12}+1}\)
\(\Rightarrow\) 5.A < 5.B
\(\Rightarrow\) A < b
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
<
<