Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)S=1+2+2^2+2^3+...+2^9
2S=2+2^2+2^3+...+2^10
2S-S=(2+2^2+2^3+2^4+...+2^10)-(1+2+2^2+2^3+...+2^9)
S=2^10-1
S=1024-1
S=1023
Ta có:5.2^8=5.256=1280
Mà 1280>1023
=>S<5.2^8
b)Ta có:M=1+2+2^2+2^3+2^4
=>2M=2+2^2+2^3+2^4+2^5
=>2M-M=(2+2^2+2^3+2^4+2^5)-(1+2+2^2+2^3+2^4)
=>M=2^5-1
Mà N=2^5-1
=>M=N
Không biết có bị sai lỗi nào hay không,nhớ kiểm tra đó
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)
Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)
Link bài làm:
https://olm.vn/hoi-dap/detail/212475876936.html
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{10}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{10^2}< 1\)