K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 

A=92013+1/92014+1

9A=92014+9/92014+1

    =(92014+1/92014+1)+(8/92014+1)

    =1+8/92014+1

B=92014+1/92015+1

9B=92015+9/92015+1

    =(92015+1/92015+1)+(8/92015+1)

    =1+8/92015+1

Vì 8/92014+1 > 8/92015+1 nên A>B

**** bạn

7 tháng 5 2017

\(\frac{9^{99}-1}{-9^{98}+1}\) < \(\frac{-9^{98}-1}{9^{97+1}}\)

9 tháng 5 2017

làm on trình bày cách giải

2 tháng 3 2017

Mình cũng đang cân người giúp câu dó nên ko trả lời được đâu !

a) Ta có : B = \(\frac{9^{19}+1}{9^{20}+1}\)\(\frac{9^{19}+1+8}{9^{20}+1+8}\)\(\frac{9^{19}+9}{9^{20}+9}\)\(\frac{9\left(9^{18}+1\right)}{9\left(9^{19}+1\right)}\)\(\frac{9^{18}+1}{9^{19}+1}\)= A

                                                       Vậy A > B

b) Ta có : B = \(\frac{10^{2018}-1}{10^{2019}-1}\)\(\frac{10^{2018}-1-9}{10^{2019}-1-9}\)\(\frac{10^{2018}-10}{10^{2019}-10}\)\(\frac{10\left(10^{2017}-1\right)}{10\left(10^{2018}-1\right)}\)\(\frac{10^{2017}-1}{10^{2018}-1}\)= A

                                                                         Vậy A < B.

                    NHỚ K CHO MK VỚI NHÉ !!!!!!!!

22 tháng 2 2018

a A lon hon B

19 tháng 7 2017

Đặt A = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+......+\frac{1}{3^9}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^8}\)

\(\Rightarrow3A-A=1-\frac{1}{3^9}\)

\(\Rightarrow2A=1-\frac{1}{3^9}\)

=> A = \(\frac{1-\frac{1}{3^9}}{2}\) 

Mà : \(1-\frac{1}{3^9}< 1\)

Nên : A < \(\frac{1}{2}\)

19 tháng 7 2017

\(\sqrt[]{}\)