Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10\cdot\dfrac{10^3+5}{10^4+5}=\dfrac{10^4+5+45}{10^4+5}=1+\dfrac{45}{10^4+5}\)
\(10\cdot\dfrac{10^2+5}{10^3+5}=\dfrac{10^3+5+45}{10^3+5}=1+\dfrac{45}{10^3+5}\)
mà \(\dfrac{45}{10^4+5}< \dfrac{45}{10^3+5}\)
nên \(\dfrac{10^3+5}{10^4+5}< \dfrac{10^2+5}{10^3+5}\)
\(A=\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}>1+\frac{3}{10^8-3}=\frac{10^8}{10^8-3}=B\)
vậy A>B
Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
(2x-5)-(\(\frac{3}{2}\) . 6x + \(\frac{3}{2}\))=4
2x -5 - 9x -\(\frac{3}{2}\) =4
2x - 9x = 4+ 5+ \(\frac{3}{2}\)
\(2^{20}+3^{30}+4^{30}=4^{10}+9^{10}+64^{10}<64^{10}+64^{10}+64^{10}=3.64^{10}\)
\(324^{10}>320^{10}=\left(5.64\right)^{10}=5^{10}.64^{10}>3.64^{10}\)
\(\Rightarrow2^{20}+3^{30}+4^{30}<324^{10}\)
Ta có:\(A=\frac{10^8+2}{10^8-1}\)
\(\Rightarrow A=\frac{10^8-1+3}{10^8-1}=\frac{10^8-1}{10^8-1}+\frac{3}{10^8-1}=1+\frac{3}{10^8-1}\)
Ta có:\(B=\frac{10^8}{10^8-3}\)
\(\Rightarrow B=\frac{10^8-3+3}{10^8-3}=\frac{10^8-3}{10^8-3}+\frac{3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}<\frac{3}{10^8-3}\)mà \(1=1\)
Nên A<B.
NẾU THẤY ĐÚNG NHỚ BẤM ĐÚNG CHO MK ! thanks