Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : N = \(\frac{100^{101}+1}{100^{100}+1}\)< \(\frac{100^{101}+1+99}{100^{100}+1+99}\)= \(\frac{100^{101}+100}{100^{100}+100}\)= \(\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)= \(\frac{100^{100}+1}{100^{99}+1}\)= M
Vậy M > N.
NHỚ K VỚI NHÉ!!!!!!
\(\frac{-10}{11}=-10.\frac{1}{11}\)
\(\frac{-10}{10}=-10.\frac{1}{10}\)
Có 1/11<1/10
=>-10/11>-10/10
Vậy ...................
Ta thấy : 11 > 10
\(\Rightarrow\frac{-10}{11}< \frac{-10}{10}\)
Vậy ..........
1 )Ta có
\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)
\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)
\(=-\dfrac{101}{200}< \dfrac{1}{2}\)
2 ) Số phân số của biểu thức B là 180 phân số
Ta có
\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)
a, 1619 = (24)19 = 276
825 = (23)25 = 275
Vì 76 > 75
=> 276 > 275
=> 1619 > 825
Vậy 1619 > 825
Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có hai tổng A và B mới để so sánh:
\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V
\(2^{1000}=\left(2^{10}\right)^{100}=1024^{100}>10^{100}\)
10^100 = (2 x 5) ^100 = 2^100 x 5 ^100
2^ 1000 = 2^ 100x 10 = 2^100 x 2^ 10
vì 2 ^10 < 5^ 100
=> ...............
=> 10^100 < 2^1000