K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

-1.-2...-100 =1.2.3....100

20 tháng 2 2020

-1 (-2)....(-100)

Có số số hạng là: (100-1):1+1=100 số

=> Tích là số nguyên dương

Mà 1.2.3...100 luôn là 1 số nguyên dương 

=> -1.(-2).(-3)...(-100) = 1.2.3...100

Vậy...

Trình bày ko hợp lý lắm mong bn sửa

20 tháng 2 2020

-1.(-2). ... .(-100)< 1.2.3. ... .100

27 tháng 4 2016

so sanh A voi 1/2 nhe, khong phai A voi 2 dau

21 tháng 3 2018

1/51+1/52+....+1/99<1/2

22 tháng 4 2017

Mỗi thừa số của A đều nhỏ hơn -1/2 nên

A< (-1/2).(-1/2).(-1/2)....(-1/2) (99 thừa số -1/2) = -1/2^99 <-1/2

Vậy A<-1/2

13 tháng 7 2017

A = (1/22 - 1).(1/32 - 1).(1/42 - 1)...(1/1002 - 1)

A = -3/22 . (-8/32) . (-15/42) ... (-9999/1002)

A = -(3/22 . 8/32 . 15/42 ... 9999/1002) ( vì có 99 thừa số, mỗi thừa số là âm nên kết quả là âm)

A = -(1.3/2.2 . 2.4/3.3 . 3.5/4.4 ... 99.101/100.100)

A = -(1.2.3...99/2.3.4...100 . 3.4.5...101/2.3.4...100)

A = -(1/100 . 101/2)

A = -101/200 < -100/200 = -1/2

Vậy A < -1/2

15 tháng 7 2016

A có : 100 - 2 + 1 = 99 thừa số.

Tất cả thừa số của A đều âm.

=> A < 0 < \(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 10

Lời giải:
Ta sẽ cm $A_n=\frac{1}{2!}+\frac{2}{3!}+....+\frac{n-1}{n!}=\frac{n!-1}{n!}$ với mọi $n\geq 2$ bằng quy nạp.

Thật vậy:

Với $n=2$ thì: $A_2=\frac{1}{2!}=\frac{2!-1}{2!}$

Với $n=3$ thì $A_3=\frac{1}{2!}+\frac{2}{3!}=\frac{3}{3!}+\frac{2}{3!}=\frac{5}{3!}=\frac{3!-1}{3!}$

.......

Giả sử khẳng định trên đúng đến $n=k$. Tức là 

$A_k=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}=\frac{k!-1}{k!}$

Ta cần chỉ ra $A_{k+1}=\frac{1}{2!}+\frac{2}{3!}+...+\frac{k-1}{k!}+\frac{k}{(k+1)!}=\frac{(k+1)!-1}{(k+1)!}$

Ta có:

$A_{k+1}=A_{k}+\frac{k}{(k+1)!}=\frac{k!-1}{k!}+\frac{k}{(k+1)!}$

$=\frac{(k+1)(k!-1)}{(k+1)!}+\frac{k}{(k+1)!}=\frac{(k+1)!-(k+1)+k}{(k+1)!}$

$=\frac{(k+1)!-1}{(k+1)!}$

Phép quy nạp hoàn thành.

Áp dụng vào bài toán:

 $\frac{1}{2!}+\frac{2}{3!}+...+\frac{9}{10!}=\frac{10!-1}{10!}<1$