Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,1^{10}=0,1^{10}\)
\(0,3^{20}=\left(0,3^2\right)^{10}=0,09^{10}\)
vi \(0,1^{10}>0,09^{10}\)nen \(0,1^{10}>0.3^{20}\)
a) \(\left(0,1\right)^{10}\) và \(\left(0,3\right)^{20}\)
Vì \(\left\{{}\begin{matrix}0,1< 0,3\\10< 20\end{matrix}\right.\)
\(\Rightarrow\left(0,3\right)^{20}>\left(0,1\right)^{10}\)
b) \(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\) và \(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)
Vì \(\left\{{}\begin{matrix}\left(-\dfrac{1}{2}\right)^{5^{1^3}}=\left(-\dfrac{1}{2}\right)^5\\\left(-\dfrac{1}{3}\right)^{3^{1^5}}=\left(-\dfrac{1}{3}\right)^3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}-\dfrac{1}{2}< -\dfrac{1}{3}\\5>3\end{matrix}\right.\)
\(\Rightarrow\left(-\dfrac{1}{2}\right)^5< \left(-\dfrac{1}{3}\right)^3\)
Vậy
\(\left(-\dfrac{1}{2}\right)^{5^{1^3}}\) < \(\left(-\dfrac{1}{3}\right)^{3^{1^5}}\)
a) Ta có:
851> 850 (1)
850= 82.25=(82)25=6425
Vì 4825 < 6425=> 4825< 850 (2)
Từ (1);(2) => 4825< 851
b) Ta có:
52000=52.1000 = (52)1000=251000
vì 251000> 101000=> 52000> 101000
c) 0,3100 và 0,5201
Ta có:
0,5201< 0,5200 (1)
0,5200=(0,52)100=(0,25)100
Vì 0,3100>0,25100=>0,3100> 0,5200 (2)
Từ (1) và (2) => 0,3100> 0,5200
d) 329 và 1813
Ta có:
329=(25)9=245
1813>1613=(24)13=252 (1)
vì 245< 252=> 329>1613 (2)
Từ (1);(2) => 329> 1813
b, 52000 = (52)1000 = 251000 > 101000
=> 52000 > 101000
câu c ko hỉu
Ta có: \(0,\left(01\right)=\frac{1}{99}\)
=> \(0,\left(31\right)=0,\left(01\right)\times31=\frac{1}{99}\times31=\frac{31}{99}\)
Ta có: 10 x 0,3(13) = 3,(13) = 3+0(13)
Mà \(0,\left(13\right)=0,\left(01\right)\times13=\frac{1}{99}\times13=\frac{13}{99}\)
=> 10 x 0,3(13) = \(3+\frac{13}{99}=\frac{310}{99}\)
=> 0,3(13) = \(\frac{310}{99}:10=\frac{31}{99}\)
\(\left(\dfrac{1}{10}\right)^{15}=\left[\left(\dfrac{1}{10}\right)^3\right]^5=\left(\dfrac{1}{1000}\right)^5=\left(\dfrac{10}{10000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left[\left(\dfrac{3}{10}\right)^4\right]^5=\left(\dfrac{81}{10000}\right)^5\)
\(\dfrac{10}{10000}< \dfrac{81}{10000}\)
\(\Rightarrow\left(\dfrac{10}{10000}\right)^5< \left(\dfrac{81}{10000}\right)^5\)
\(\Rightarrow\left(\dfrac{1}{10}\right)^{15}< \left(\dfrac{3}{10}\right)^{20}\)
Ta có:
\(\left(\dfrac{1}{10}\right)^{15}=\left[\left(\dfrac{1}{10}\right)^3\right]^5=\left(\dfrac{1}{1000}\right)^5\)
\(\left(\dfrac{3}{10}\right)^{20}=\left[\left(\dfrac{3}{10}\right)^4\right]^5=\left(\dfrac{81}{10000}\right)^5\)
Ta thấy: \(\dfrac{1}{1000}< \dfrac{81}{10000}\)
\(\Rightarrow\left(\dfrac{1}{1000}\right)^5< \left(\dfrac{81}{10000}\right)^5\)
\(\Rightarrow\left(\dfrac{1}{10}\right)^{15}< \left(\dfrac{3}{10}\right)^{20}\)
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
\(\left(0,3\right)^{20}=\left(\left(0,3\right)^2\right)^{10}=\left(0,09\right)^{10}