K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Đáp án D

Phương pháp giải:

Đặt z=a+bi thực hiện yêu cầu bài toán, chú ý số phức là số thực khi phần ảo bằng 0

Lời giải:

Ta có  

Khi đó

 

Khi và chỉ khi b + 2 = 0 ⇔ b = - 2  

Vậy S=a+2b= -3 

20 tháng 6 2018

Chọn A.

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Lời giải:
Ta có:

$\sqrt{(a-2)^2+(b+1)^2}=2$
$\Rightarrow (a-2)^2+(b+1)^2=4$

Áp dụng BĐT Bunhiacopxky:

$[(a-2)^2+(b+1)^2](1^2+2^2)\geq [(a-2)+2(b+1)]^2$
$\Leftrightarrow 20\geq (a+2b)^2$

$\Rightarrow a+2b\leq \sqrt{20}$

Vậy $S_{\max}=\sqrt{20}$

19 tháng 7 2017

Đáp án A

Đặt z=x+yi

Ta có  suy ra tập biểu diễn số phức z là đường tròn tâm M(0;0) bán kính R=1

(m > 0) suy ra tập biểu diễn số phức z là đường tròn tâm N( 3 ;1) bán kính r=m

Để tồn tại duy nhất số phức z thì 2 đường tròn phải tiếp xúc với nhau suy ra MN=R+r

Vậy tập S chỉ có 1 giá trị của m

NV
10 tháng 4 2022

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

NV
10 tháng 4 2022

undefined

20 tháng 11 2017







25 tháng 2 2019

Đáp án B

Ta có: 

Với b ⩾ -3 thì (1) tương đương với: 

Vậy a + 3b = -5

23 tháng 11 2017

8 tháng 1 2018

Chọn C.

·    

·     Dấu “=” xảy ra khi:

·    

·     Dấu “=” xảy ra khi: