Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'
=> OO'// d // b mà O BD mp (b;d)
=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm
b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành
A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\) và \(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\) và \(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).
a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E
=> E ∈ DC, mà DC ⊂ (SDC)
=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N
=> N ∈ ME mà ME ⊂ (MAB)
=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)
b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)
=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)
=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO
Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN
Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.
Lời giải
Tiếp tuyến có dạng t: y=ax+b
Để tiếp tuyến // với y=2x =>a=2
đường thẳng tiếp tuyến có dạng t: y=2x+b
là tiếp tuyến của (C) \(y=4x^2-6x+3\)
Thì \(\Rightarrow pt:=4x^2-6x+3=2x+b\) phải có nghiệm kép
\(\Leftrightarrow4x^2-8x+3-b=0\) phải có nghiệm kép
\(\Rightarrow\Delta=0\Rightarrow16-4\left(3-b\right)=4b+4=0\Rightarrow b=-1\)
\(4x^2-8x+4=\left(x-1\right)^2=0\Rightarrow x=1\)\(\)
với x=1 ta có y(1) =2.1-1=1
Vậy điểm cần tìm là : A(1,1)
Có \(y'\left(x\right)=8x-6\).
Nếu \(y'\left(x_0\right)\) là hệ số góc của tiếp tuyến và tiếp tuyến song song với đường thẳng \(y=2x\) suy ra: \(8x-6=2\)\(\Leftrightarrow x=1\).
Vậy tiếp tuyến cần tìm có phương trình:
\(y=2\left(x-1\right)+y\left(1\right)\)\(\Leftrightarrow y=2x-2+1\)\(\Leftrightarrow y=2x-1\).
Đáp án C
2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau
8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia