K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

\(A\cap B=\varnothing\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m+1< 0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m< -1\end{matrix}\right.\)

Ta có nên làm bánh mì sữa không, ngồi trong phòng mọc nấm mất... Nhưng mà hong có men, haizz, lười quá

18 tháng 12 2022

Chọn C

\(C_RB=R\text{B}=\left(-\infty;3m-1\right)\cup\left(3m+3;+\infty\right)\)

Để A là tập con của \(C_RB\) thì

3m-1>=m

=>2m>=1

=>m>=1/2

13 tháng 4 2016

) Ta có   =  + 

Nếu coi hình bình hành ABCd có  =  =  và  =  =  thì   là độ dài đường chéo AC và  = AB; = BC.

Ta lại có: AC = AB + BC

Đẳng thức xảy ra khi điểm B nằm giữa hai điểm A, C.

Vậy   =  +  khi hai vectơ  cùng hướng.

b) Tương tự,  là độ dài đường chéo AC

 là độ dài đường chéo BD

 = => AC = BD.

Hình bình hành ABCD có hai đường chéo bằng nhau nên nó là hình chữ nhật, ta có AD  AB hay   

30 tháng 5 2019

từ 0 đến 9 có : 10 chữ số

từ 10 đến 80 có : 71 số

=> từ 10 đến 80 có: 71 x 2 = 142 chữ số

=> từ 0 đến 80 có : 10 + 142 = 152 chữ số

30 tháng 5 2019

a) Từ 0 -> 9 có: 10 CS

   Từ 10 -> 80 có: [(80 - 10) + 1] x 2 = 142 CS

Dãy số trên có số chữ số là:

10 + 142 = 152 (CS)

Ta nhận xét các chữ số chia hết cho 3 là 0; 3; 6; 9

Từ 0 -> 9 có : 1 chữ số 3

10 -> 20; 20-> 30; ..... 60 -> 70; 70 -> 80 Mỗi cặp đó đều có 1 CS 3 ở hàng đơn vị. Vậy có tổng cộng số CS 3 là 1 x 7 = 7 (CS)

Riêng từ 30 -> 39 thì: có 10 CS 3 ở hàng chục 

Vậy từ 0 đến 80 có số chữ số 3 là: 1 + 7 + 10 = 18 (CS)

Ta nhận thấy các chữ số 3, 6 ,9 đều có cùng số chữ số trong dãy trên riêng số 9 là bị thiếu 10 CS vì không có cặp 90 -> 99

Các số 10; 20; 30;.... 80; 90 đều có CS 0 ở hàng đơn vị vậy có tất cả : 9 CS 0

Có tổng cộng các chữ số chia hết cho 3 là:

18 + 18 + 8 + 9 + 1 = 54 (CS)

             Đ/S: a) 152 CS

                    b) 54 CS

Chúc bạn học tốt !!!

VT
18 tháng 12 2022

G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}3=\dfrac{x_A-1+x_C}{3}\\1=\dfrac{y_A+0+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_C=10\\y_A+y_C=3\end{matrix}\right.\)

Gọi I là giao điểm của AC và BD.

ABCD là hình bình hành

\(\Rightarrow\) I là trung điểm của AC, I là trung điểm của BD.

I là trung điểm của AC \(\Rightarrow I\left(5;\dfrac{3}{2}\right)\).

I là trung điểm của BD

\(\Rightarrow\left\{{}\begin{matrix}5=\dfrac{-1+x_D}{2}\\\dfrac{3}{2}=\dfrac{0+y_D}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=11\\y_D=3\end{matrix}\right.\)

\(\Rightarrow D\left(11;3\right)\).

18 tháng 12 2022

ủa thế rồi không cần phải tính tọa độ A và C hả, lúc tôi đang nháp thì thấy cần phải tính nhưng quá nhiều biến nên là tôi đã giậm chầm tại đây

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)