Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
Các số nguyên tố từ 2 đến 100
2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 2
Tính chất của số nguyên tố
Kí hiệu là ''b / a'' nghĩa là b là ước của a, kí hiệu a \(⋮\) b nghĩa là a chia hết cho b
1. Ước tự nhiên khác 1 nhỏ nhất của 1 số tự nhiên là nguyên tố
Chứng minh; Giả sử d / a nhỏ nhất; d \(\ne\) 1.
Nếu d không nguyên tố \(\Rightarrow\) d \(=\) d1. d2 ; d1, d2 lớn hơn 1
\(\Rightarrow\) d1 / a với d1 lớn hơn d ; mâu thuẫn với d nhỏ nhất. Vậy d là nguyên tố
2. Cho p là nguyên số; a \(\in\) N; a \(\ne\) 0. Khi đó
a,b \(=\) p \(\Leftrightarrow\) a \(⋮\) p
a,b \(=\) 1\(=\) a p
3. Nếu tích của nhiều số chia hết cho một số nguyên tố p thì có ít nhất một thừa số chia hết cho p
\(II\) ai \(⋮\) p \(\Rightarrow\) \(\exists\)ai \(⋮\)p
4. Ước số dương bé nhất khác 1 của số nguyên tố không vượt qua \(\sqrt{a}\)
5. 2 số nguyên tố nhỏ nhất và cũng là số nguyên tố chẵn duy nhất
6. Tập hợp các số nguyên là vô hạn. Tương đương với viếc ko có nguyên số lớn nhất
Chứng minh; Giả sử có hữu hạn số nguyên tố; p1 bé hơn p2 bé hơn .... pn
Nhật xét a \(=\) p1. p2 .... pn + 1
Ta có; a lớn hơn 1 và a 1 pi; ''i\(=\) a là hợp số, a có nguyên tố pi, hay aMpi và pi M pi. 1M pi ; Mâu thuẫn
Vậy tập hợp các số nguyên tố là vô hạn
Chúc bạn học giỏi
Bạn tham khảo:
Vì p là số nguyên tố lớn hơn 5 => p không chia hết cho 3 => p chia 3 dư 1 hoặc p chia 3 dư 2=> p có dạng 3k+1 hoặc 3k+2
Sai. Vì2 \(^2\)n+1-1=2\(^2\)n. 2\(^2\)=4 và 4.n thì luôn luôn ra kết quả là hợp số
dạng tổng của 2 của 2 số nguyên tố
là số chỉ có hai ước là 1 và chính nó