K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

n^200<5^300=>(n^2)^100<(5^3)^100

=>n^2<5^3=125

=>n^2 thuộc {0;4;9;...;121}

mà n lớn nhất=>n^2=121=>n=+11

mà n nguyên dương =>n=11

tick nhé

3 tháng 12 2015

n^200<5^300=>(n^2)^100<(5^3)^10;0=>n^2<5^3=125=>n^2={0;4;9;...;121}

ma n lon nhat=>n^2=121=>n=11

tick nhe

16 tháng 8 2016

Ta có : \(n^{200}=\left(n^2\right)^{100};5^{300}=\left(5^3\right)^{100}=125^{100}\)

Để: \(n^{200}< 5^{300}\Rightarrow\left(n^2\right)^{100}< 125^{100}\Leftrightarrow n^2< 125\)\(\Leftrightarrow n=11\)

16 tháng 8 2016

\(n^{200}< 5^{300}\) => \(\left(n^2\right)^{100}< 125^{100}\) => \(n^2< 125\) <=> \(11^2< 125\) => \(n=11\)

21 tháng 2 2016

ủng hộ cho tui tui giải cho

21 tháng 2 2016

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

\(n^{200}=\left(n^2\right)^{100}\)

n=12

9 tháng 5 2016

Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)

Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên

Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.

=> n chia hết cho cả 2;3 và 4 

Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)

\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.

23 tháng 12 2015

Ta có:  \(n^{200}<5^{300}\)=> \(n^{2\cdot100}<5^{3\cdot100}=>\left(n^2\right)^{100}<\left(5^3\right)^{100}\Leftrightarrow n^2<5^3\Leftrightarrow n^2<125\)\(\Rightarrow n^2\in\left\{0;1;4;9;16;25;36;49;64;81;100;121\right\}\)

mà n >0

\(=>n\in\left\{1;2;3;4;5;6;7;8;9;10;11\right\}\)

mà n là số nguyên dương lớn nhất

=> n = 11

Vậy n =11

 

21 tháng 4 2021

giả sử \(m\ge n\)

để m.n lớn nhất thì m=n=45(90:2) nhưng vì nguyên tố cùng nhau nên m=47;n=43(\(m;n\ne44;46\)vì m;n phải nguyên tố cùng nhau)

vậy \(\left(m;n\right)\in\left\{\left(47;43\right);\left(43;47\right)\right\}\)