\(\frac{a-3}{2}\)  

nhận giá trị dương a=.......">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

                                                       Bài giải

                          \(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)

              Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất

\(\Rightarrow\text{ }\frac{a-3}{2}=1\)

\(\Rightarrow\text{ }a-3=2\)

\(a=2+3\)

\(x=5\)

19 tháng 8 2019

                                                       Bài giải

                          \(\frac{a-3}{2}\) đạt giá trị dương khi \(\left(a-3\right)\text{ }⋮\text{ }2\)

              Mà số nguyên a nhỏ nhất => \(\frac{a-3}{2}\) đạt giá trị nguyên dương nhỏ nhất

\(\Rightarrow\text{ }\frac{a-3}{2}=1\)

\(\Rightarrow\text{ }a-3=2\)

\(a=2+3\)

\(x=5\)

9 tháng 8 2017

ai trả lời nhanh mình k cho mình cần luôn

21 tháng 7 2017

Bài 1:

a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu

Mà -2017 là âm 

=> 2m - 8 cũng là âm

=> 2m < 8

=> m < 4 

Vậy với m < 4 thì x là số hữa tỉ dương

b)   Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác  dấu

Mà -2017 là âm 

=> 2m - 8  là dương

=> 2m > 8 

=> m > 4 

Vậy với m > 4 thì x là số hữa tỉ âm

c)  Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )

=> 2m - 8 = 0

=> 2m = 8

=> m = 4

Vậy với m = 4 thì x không âm không dương

Bài 2:

Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)

\(\Rightarrow2x+6-4-6⋮x+3\)

\(\Rightarrow\left(2x+6\right)-10⋮x+3\)

\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))

\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)

Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath

17 tháng 6 2021

Ta có \(\frac{a+11}{a}=1+\frac{11}{a}\)

Để x \(\inℤ\Leftrightarrow\frac{11}{a}\inℤ\Leftrightarrow11⋮a\Leftrightarrow a\inƯ\left(11\right)\)

=> \(a\in\left\{1;-11;-1;11\right\}\)

Vây  \(a\in\left\{1;-11;-1;11\right\}\) thì x nguyên 

17 tháng 6 2021

​Để  \(\frac{a+11}{a}\)là một số nguyên 
Vậy \(\Rightarrow\)\((a+11)⋮a\)
Mà a\(⋮\)
\(\Rightarrow\)11 \(⋮\)
Để 11 chia hết cho a thì a phải là ước của 11 \(\Leftrightarrow\)Ư (11) = 1, 11 , -11 , -1 
\(\Rightarrow a=1,11,-11,-1\)