Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Do đó phương trình có 2 nghiệm thực và 4 nghiệm phức. Vậy nhận xét 4, 6 đúng.
a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R
y’ = 2x3 – 6x = 2x(x2 – 3)
y’ = 0 ⇔ x = 0, x = ±√3
Bảng biến thiên:
Đồ thị hàm số:
b)
y’’ = 6x2 – 6x
y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1
y’(-1) = 4, y’’(1) = -4, y(± 1) = -1
Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3
Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3
c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).
Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).
Dễ thấy:
m < -6: ( 1) vô nghiệm
m = -6 : (1) có 2 nghiệm
-6 < m < 3: (1) có 4 nghiệm
m = 3: ( 1) có 3 nghiệm
m > 3: (1) có 2 nghiệm
\(f^2\left(x\right).f'\left(x\right)=x.e^x\)
Lấy nguyên hàm 2 vế:
\(\int f^2\left(x\right).f'\left(x\right)dx=\int x.e^xdx\)
\(\Rightarrow\dfrac{1}{3}f^3\left(x\right)=\left(x-1\right)e^x+C\)
Thay \(x=1\)
\(\Rightarrow\dfrac{f^3\left(1\right)}{3}=C\Rightarrow C=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{1}{3}f^3\left(x\right)=\left(x-1\right)e^x+\dfrac{1}{3}\Rightarrow f^3\left(x\right)=3\left(x-1\right)e^x+1\)
\(f\left(x\right)+1=0\Leftrightarrow f\left(x\right)=-1\Leftrightarrow f^3\left(x\right)=-1\)
\(\Leftrightarrow3\left(x-1\right)e^x+1=-1\Rightarrow3\left(x-1\right)e^x+2=0\)
Xét hàm \(g\left(x\right)=3\left(x-1\right)e^x+2\Rightarrow g'\left(x\right)=3x.e^x=0\Rightarrow g'\left(x\right)=0\) có đúng 1 nghiệm
\(\Rightarrow g\left(x\right)=0\) có tối đa 2 nghiệm
\(g\left(0\right)=-1< 0\) ; \(g\left(1\right)=2>0\) ; \(g\left(-2\right)=-\dfrac{9}{e^2}+2>0\)
\(\Rightarrow\left\{{}\begin{matrix}g\left(0\right).g\left(1\right)< 0\\g\left(0\right).g\left(-2\right)< 0\end{matrix}\right.\) \(\Rightarrow g\left(x\right)=0\) có đúng 2 nghiệm