Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.
Đặt t = tanx thì phương trình này trở thành
2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.
Vậy
b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành
3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x
⇔ sin2x - 4sinxcosx + 3cos2x = 0
⇔ tan2x - 4tanx + 3 = 0
⇔
⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.
c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương
sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔
⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.
d) 2cos2x - 3√3sin2x - 4sin2x = -4
⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0
⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0
⇔
\(a,sin2x-2sinx+cosx-1=0\)
\(\Leftrightarrow2sinxcosx-2sinx+cosx-1=0\)
\(\Leftrightarrow2sinx\left(cosx-1\right)+cosx-1=0\)
\(\Leftrightarrow\left(cosx-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=1\\sinx=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2k\pi\\x=\frac{-\pi}{6}+2k\pi\end{cases}}}\)
\(b,\sqrt{2}\left(sinx-2cosx\right)=2-sin2x\)
\(\Leftrightarrow\sqrt{2}sinx-2\sqrt{2}cosx-2+2sinxcosx=0\)
\(\Leftrightarrow\sqrt{2}sinx\left(1+\sqrt{2}cosx\right)-2.\left(\sqrt{2}cosx+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}cosx+1\right)\left(\sqrt{2}sinx-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}cosx=\frac{-\sqrt{2}}{2}\\sinx=\frac{2\sqrt{2}}{2}\left(l\right)\end{cases}}\)(vì \(-1\le sinx\le1\))
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3\pi}{4}+2k\pi\\x=\frac{5\pi}{4}+2k\pi\end{cases}}\)
\(c,\frac{1}{cosx}-\frac{1}{sinx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\frac{sinx-cosx}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow\frac{-\sqrt{2}cos\left(x+\frac{\pi}{4}\right)}{sinx.cosx}=2\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\Leftrightarrow sin2x+1=0\)
\(\Leftrightarrow sin2x=-1\)
\(\Leftrightarrow2x=\frac{3\pi}{2}+2k\pi\)
\(\Leftrightarrow x=\frac{3\pi}{4}+k\pi\)
ta có \(\hept{\begin{cases}\sqrt{2}\left(sinx+cosx\right)=2sin\left(x+\frac{\pi}{4}\right)\\sinx.cosx=\frac{1}{2}sin2x=-\frac{1}{2}cos\left(2x+\frac{\pi}{2}\right)=-\frac{1-2sin^2\left(x+\frac{\pi}{3}\right)}{2}\end{cases}}\)
Vậy phương trình \(\Leftrightarrow2sin\left(x+\frac{\pi}{4}\right)+\frac{1-2sin^2\left(x+\frac{\pi}{4}\right)}{2}=1\)
Đặt \(sin\left(x+\frac{\pi}{4}\right)=a\Rightarrow PT\Leftrightarrow2a+\frac{1-2a^2}{2}=1\Leftrightarrow\orbr{\begin{cases}a=1+\frac{1}{\sqrt{2}}\\a=1-\frac{1}{\sqrt{2}}\end{cases}}\)
vì sin <1 nên \(sin\left(x+\frac{\pi}{4}\right)=1-\frac{1}{\sqrt{2}}\)có 4 nghiệm trên \(\left(0,2\pi\right)\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
\(\Leftrightarrow sin^{2015x}-2sin^{2017}x-cos^{2016}x+2cos^{2018}x-cos2x=0\)
\(\Leftrightarrow sin^{2015}x\left(1-2sin^2x\right)+cos^{2016}x\left(2cos^2x-1\right)-cos2x=0\)
\(\Leftrightarrow cos2x\left(sin^{2015}x+cos^{2016}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin^{2015}x+cos^{2016}x=1\end{matrix}\right.\)
\(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\left\{{}\begin{matrix}sin^{2015}x\le sin^2x\\cos^{2016}x\le cos^2x\end{matrix}\right.\) \(\Rightarrow sin^{2015}x+cos^{2016}x\le sin^2x+cos^2x=1\)
Dấu "=" xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=\pm1\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=0\\sin=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(-10\le\frac{\pi}{4}+\frac{k\pi}{2}\le30\Rightarrow k=...\)
\(-10\le k\pi\le30\Rightarrow k=...\)
\(-10\le\frac{\pi}{2}+k2\pi\le30\Rightarrow k=...\)
Bạn tự giải nốt và kết luận