K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

bài này chỉ cần thay biểu thức dưới vào biểu thức trên là xong đó

6 tháng 3 2016

ừ để mình thử nha

6 tháng 3 2016

2 nhé bạn

6 tháng 3 2016

bạn thay cái dưới vào à hay thế nào vậy

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Bạn tham khảo lời giải tại đây:

Câu hỏi của Nguyễn Thu Ngà - Toán lớp 9 | Học trực tuyến

6 tháng 2 2020

Nãy có sửa đề xong làm rồi nhưng tưởng sai nên bỏ thấy cô Chi cmt nên tui cũng nghĩ là sai giờ làm nha!
Đề: \(\hept{\begin{cases}x^3+2xy^2+12y=0\\x^2+8y^2=12\end{cases}}\)

~~~~~~~ Bài làm ~~~~~~~

Ta thấy nếu hệ có nghiệm \(\left(x,y\right)\Rightarrow y\ne0\)Vì nếu \(y=0\Rightarrow\hept{\begin{cases}x^2=19\\x^3=0\end{cases}\left(vl\right)}\)

Khi: \(y\ne0\)thay \(12=x^2+8y^2\)vào pt sau:

\(x^3+2xy^2+y\left(x^2+8y^2\right)=0\)

\(\Leftrightarrow x^3+x^2y+2xy^2+8y^3=0\)

\(\Leftrightarrow\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2+2\left(\frac{x}{y}\right)+8=0\)

Đặt: \(t=\frac{x}{y}\Rightarrow t^3+t^2+2t+8=0\)

\(\Leftrightarrow\left(t+2\right)\left(t^2-t+4\right)=0\)

\(\Leftrightarrow t=-2\)(Vì \(t^2-y+4=\left(t-\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Nên suy ra: \(x=-2y\)

Thay \(x=-2y\)vào pt thứ 2 ta được:

\(4y^2+8y^2=12\)

\(\Leftrightarrow y^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

  • Khi \(y=1\Rightarrow x=-2\)
  • Khi \(y=-1\Rightarrow x=2\)

Vậy hệ pt có 2 nghiệm \(\left(x,y\right)=\left(2;-1\right);\left(-2;1\right)\)

6 tháng 2 2020

Em xem xem có bị nhầm đề không?. Trước kia cô từng thấy bài này nhưng mà \(8y^2\). Xem lại đề giúp cô nha!

28 tháng 3 2019

\(\left\{{}\begin{matrix}x^3+2xy^2+12y=0\\8y^2+x^2=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2xy^2+\left(8y^2+x^2\right)y=0\\8y^2+x^2=0\end{matrix}\right.\)

Thấy x = 0 vô lý .

\(\Rightarrow y=tx\left(t\ne0\right)\)

\(\Rightarrow x^3\left(8t^3+2t^2+t+1=0\right)\)

\(\Rightarrow t=-\frac{1}{2}\)

\(\Rightarrow...\)

#Kaito#

5 tháng 2 2017

Câu hỏi của Ngu Người - Toán lớp 9 - Học toán với OnlineMath

26 tháng 8 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra \(\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0\)

\(\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0\)

\(\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0\). Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra\(x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to\)

Nếu y=0 thì x=0, khi đó không thỏa mãn \(x^2+8y^2=12\) (loại).

Với y khác 0, chia cả hai vế cho \(y^3,\) ta được

\(t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y\)

Thế vào phương trình thứ hai ta được \(12y^2=12\to y=\pm1\to x=\mp2.\)

Vậy ta có hai cặp nghiệm \(\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).\)

 

7 tháng 10 2015

Bài 1. Từ giả thiết, với chú ý abc=1, ta suy ra $\left(a+b\right)+c=\frac{a+b}{ab}+\frac{1}{c}=c\left(a+b\right)+\frac{1}{c}\to\left(a+b\right)\left(c-1\right)=\frac{c^2-1}{c}\to\left(c-1\right)\left(a+b-\frac{c+1}{c}\right)=0$(a+b)+c=a+bab +1c =c(a+b)+1c →(a+b)(c−1)=c2−1c →(c−1)(a+b−c+1c )=0

$\to\frac{\left(c-1\right)\left(ac+bc-c-1\right)}{c}=0\to\left(c-1\right)\left(\frac{1}{b}-1+c\left(b-1\right)\right)=0\to\left(c-1\right)\left(b-1\right)\left(c-\frac{1}{b}\right)=0$→(c−1)(ac+bc−c−1)c =0→(c−1)(1b −1+c(b−1))=0→(c−1)(b−1)(c−1b )=0

$\to\left(c-1\right)\left(b-1\right)\left(a-1\right)=0$→(c−1)(b−1)(a−1)=0. Vậy ba số a,b,c có 1 số bằng 1.

 

Bài 2. Từ giả thiết ta suy ra$x^3+2xy^2+\left(x^2+8y^2\right)y=0\to x^3+x^2y+2xy^2+8y^3=0\to$x3+2xy2+(x2+8y2)y=0→x3+x2y+2xy2+8y3=0→

Nếu y=0 thì x=0, khi đó không thỏa mãn $x^2+8y^2=12$x2+8y2=12 (loại).

Với y khác 0, chia cả hai vế cho $y^3,$y3, ta được

$t^3+t^2+2t+8=0\to\left(t+2\right)\left(t^2-t+4\right)=0\to t=-2\to x=-2y$t3+t2+2t+8=0→(t+2)(t2−t+4)=0→t=−2→x=−2y

Thế vào phương trình thứ hai ta được $12y^2=12\to y=\pm1\to x=\mp2.$12y2=12→y=±1→x=∓2.

Vậy ta có hai cặp nghiệm $\left(x,y\right)=\left(2,-1\right);\left(-2;1\right).$(x,y)=(2,−1);(−2;1).

 

16 tháng 9 2018

Nếu x=0 thì bạn giải hệ dưới ra

Nếu x\(\ne\)0 thì chia cả tử và mẫu của hệ trên, ta có:

\(\left\{{}\begin{matrix}x^2+2y^2=-12y\\x^2+8y^2=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6y^2=12y+12\\x^2+8y^2=12\end{matrix}\right.\)

Bạn giải hệ trên là ra y, thay vào hệ dưới tìm x ( với x khác 0)