Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt P(y)=0
⇔3y-6=0
⇔3y=6
hay y=2
Vậy: S={2}
Đặt N(x)=0
\(\Leftrightarrow\frac{1}{3}-2x=0\)
\(\Leftrightarrow2x=\frac{1}{3}\)
hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)
Vậy: \(S=\left\{\frac{1}{6}\right\}\)
Đặt D(z)=0
⇔\(z^3-27=0\)
\(\Leftrightarrow z^3=27\)
hay z=3
Vậy: S={3}
Đặt M(x)=0
⇔\(x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
Vậy: S={2;-2}
Đặt C(y)=0
\(\Leftrightarrow\sqrt{2}y+3=0\)
\(\Leftrightarrow\sqrt{2}y=-3\)
\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)
Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)
b) Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+1\ge1>0\forall x\)
hay Q(x) vô nghiệm(đpcm)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a: \(=\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+18\)
Hệ số cao nhất là 80/9
Hệ số tự do là 18
Bậc là 3
b: \(f\left(3\right)=\dfrac{80}{9}\cdot27+\dfrac{1}{3}\cdot9-\dfrac{1}{3}\cdot3+18=260\)
\(f\left(-3\right)=\dfrac{80}{9}\cdot\left(-27\right)+\dfrac{1}{3}\cdot9+\dfrac{1}{3}\cdot3+18=-218\)
c: f(x)=-28 nên \(\dfrac{80}{9}x^3+\dfrac{1}{3}x^2-\dfrac{1}{3}x+46=0\)
\(\Leftrightarrow x\simeq-1.75\)
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
a) x2+5x=0
=>x(x+5)=0
=> x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b) 3x2-4x=0
=>x(3x-4)=0
=>x=0 hoặc 3x-4=0
=.x=0 hoặc x=4/3
c)5x5+10x=0
=>x(5x4+10)=0
=> Ta có 5x4+10>0 nên x=0
d)x3+27=0
=> x3=-27
=>x=-3
a/ \(x^2+5x=0\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)
Các câu sau bạn cứ giải tương tự
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
bài nay đơn giàn thôi bạn chỉ can thay thẳng x=1 vào đa thức P(x) cứ lam theo thế là ra
Ta có
x 3 + 27 = 0 ⇒ x 3 = - 27 ⇒ x 3 = - 3 3 ⇒ x = - 3
Vậy đa thức đã cho có một nghiệm x = -3
Chọn đáp án A.