Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2(\(k>0\))
Nếu p=3k+1 thì \(p^2+2015=\left(3k+1\right)^2+2015\)
\(=9k^2+6k+1+2015=3k^2+6k+2016\)
\(=3\left(3k^2+2k+672\right)\)chia hết cho 3 và lớn hơn 3 nên là hợp số
Nếu p=3k+2 thì \(p^2+2015=\left(3k+2\right)^2+2015\)
\(=9k^2+12k+4+2015=9k^2+12k+2019\)
\(=3\left(3k^2+4k+673\right)\)chia hết cho 3 và lớn hơn 3 nên là hợp số
Vậy với p là số nguyên tố lớn hơn 3 thì \(P^2+2015\)là hợp số
cau 1: { -24 ; -10}
cau 2: { 1 ; 3 ; 7 ; 9 }
cau 3: { 1 ; 4 ; 5 ; 6 ; 9 }
tich cho minh nha
câu 1 là {-24;-10} câu 2 là {1;3;7;9} câu 3 là {0;1;4;5;6;9} , tick nha
hợp số vì chia hết cho 9 ( tổng các chữ số chia hết cho 9)
Chúc em học tốt!