Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(m^3=4+\sqrt{80}-\sqrt{80}+4-3m\left(\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\right)\)
\(\Leftrightarrow m^3=-12m+8\Leftrightarrow m^3+12m-8=0\)
vậy m la nghiệm của pt
Thay \(a=\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}}\)để phân biệt a và x.
\(a^3=4+\sqrt{80}+4-\sqrt{80}+3\sqrt[3]{\left(4+\sqrt{80}\right)\left(4-\sqrt{80}\right)}\left(\sqrt[3]{4+\sqrt{80}}+\sqrt[3]{4-\sqrt{80}}\right)\)
\(\Rightarrow a^3=8+3\sqrt[3]{4^2-80^2}.a\)
\(\Leftrightarrow a^3+12a-8=0\)
Do đó, a là một nghiệm của pt \(x^3+12x-8=0\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
Câu 1) x\(^2\) - 5 = 0
\(\Leftrightarrow\)(x - \(\sqrt{5}\))(x + \(\sqrt{5}\)) = 0
\(\Leftrightarrow\)x = \(\sqrt{5}\) hoặc
x = -\(\sqrt{5}\)
Câu 2) x\(^2\) - \(2\sqrt{13}x\) +13 = 0
\(\Leftrightarrow\)(x - \(\sqrt{13}\))\(^2\) = 0
\(\Leftrightarrow\)x - \(\sqrt{13}\) = 0
\(\Leftrightarrow\)x = \(\sqrt{13}\)
Câu 3) \(\left(x+2\right)\sqrt{x-3}=0\)
\(\Leftrightarrow x=-2\) hoặc
\(x=3\)
Câu 4) Tới lúc này mình hơi lười nên bạn tự giải phương trình nhé.
Hướng dẫn: Ta biết nếu\(\sqrt{x}\) = a với a\(\ge\) 0 thì x= a\(^2\), nên ta đưa về tìm x thỏa mãn (x + \(\sqrt{x-2}\))\(^2\) = 4(x-1)
Giải phương trình này ta có x=2.
Câu 5)\(\sqrt{9-12x+4x^2}=4\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4\)
\(\Leftrightarrow\left|3-2x\right|=4\)
\(\Leftrightarrow3-2x=4\) hoặc
-3 + 2x = 4
\(\Leftrightarrow\) x= -0.5 hoặc x= 3.5
ta có \(3x=1-\sqrt[3]{\frac{25+\sqrt{621}}{2}}-\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
<=> \(1-3x=\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\)
<=> \(\left(1-3x\right)^3=\left(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}\right)^3\)
<=> \(1-9x+27x^2-27x^3=\frac{25+\sqrt{621}}{2}+\frac{25-\sqrt{621}}{2}+3\left(\frac{25+\sqrt{621}}{2}\cdot\frac{25-\sqrt{621}}{2}\right)\left(1-3x\right)\)( vì \(\sqrt[3]{\frac{25+\sqrt{621}}{2}}+\sqrt[3]{\frac{25-\sqrt{621}}{2}}=1-3x\)....phía trên 2 dòng )
<=> \(1-9x+27x^2-27x^3=25+3\cdot1\cdot\left(1-3x\right)\)
<=> \(1-9x+27x^2-27x^3=25+3-9x\)
<=> \(1-9x+27x^2-27x^3=28-9x\)
<=> \(27x^3-27x^2+27=0\)
<=.\(27\left(x^3-x^2+1\right)=0\)
<=. \(x^3-x^2+1=0\)
pt \(x^3-x^2+1=0\) và pt \(x^5+x+1=0\) đều có nghiệm chung
vậy đccm
Áp dụng hđt \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\) có:
\(m^3=\left(\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\right)^3\)
\(=4+\sqrt{80}-\left(\sqrt{80}-4\right)-3\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80}-4\right)}.m\)
\(=8-3\sqrt[3]{80-16}.m=8-3\sqrt[3]{64}m=8-3.4m=8-12m\)
Suy ra \(m^3+12m-8=0\)
Vậy m là nghiệm của pt x3+12x-8=0