Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Số lượng vi khuẩn đạt đến 5000 cá thể khi 5000 = 1200 . ( 1 , 148 ) t
Số lượng vi khuẩn tại ngày thứ t bằng
Với t = 0 ta có: N(0) = 250000,
Vậy N(t) = 8000.ln(1 + 0,5t) + 250000
khi đó N(10) ≈ 264334.
Chọn A
Số lượng ban đầu: N ( 0 ) = 1200 . ( 1 , 148 ) 0 = 1200 cá thể
Số lượng sau 10 ngày: N ( 10 ) = 1200 . ( 1 , 148 ) 1 0 ≈ 4771 ≈ 4800 cá thể
Chọn đáp án D.
Chọn A.
Ta có ∫ 0 12 2000 1 + x d x = 2000 ln | 1 + x | 12 0 = 2000 ln 13 = N ( 12 ) - N ( 0 )
=> N(12) = 2000 ln13+ 5000 ≈ 10130
7.
\(V=\frac{\left(a\sqrt{2}\right)^3\pi.\sqrt{2}}{3}=\frac{4\pi a^3}{3}\)
8.
Mệnh đề B sai
Mệnh đề đúng là: \(lnx< 1\Rightarrow0< x< e\)
9.
\(\overline{z}=5-2i\Rightarrow z=5+2i\Rightarrow\left|z\right|=\sqrt{5^2+2^2}=\sqrt{29}\)
10.
\(\overrightarrow{NM}=\left(1;-3;-2\right)\) nên đường thẳng MN nhận \(\left(1;-3;-2\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=t\\y=1-3t\\z=3-2t\end{matrix}\right.\)
4.
\(V=3.4.5=60\)
5.
\(\left\{{}\begin{matrix}log_8a+2log_4b=5\\log_8b+2log_4a=7\end{matrix}\right.\)
\(\Rightarrow log_8a-log_8b-2\left(log_4a-log_4b\right)=-2\)
\(\Leftrightarrow log_8\frac{a}{b}-2log_4\frac{a}{b}=-2\)
\(\Leftrightarrow\frac{1}{3}log_2\frac{a}{b}-log_2\frac{a}{b}=-2\)
\(\Leftrightarrow-\frac{2}{3}log_2\frac{a}{b}=-2\)
\(\Leftrightarrow log_2\frac{a}{b}=3\)
\(\Rightarrow\frac{a}{b}=8\)
6.
\(log_{\frac{1}{5}}x=t\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}log_{\frac{1}{5}}x=-1\\log_{\frac{1}{5}}x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=\frac{1}{125}\end{matrix}\right.\)
Đáp án D
Phương pháp:
Giải phương trình mũ cơ bản.
Cách giải: