Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A: a = - 5000
Nghĩ đơn giản đây là hàm số giảm => hệ số góc âm
Tốc độ 5000 ----> a = - 5000
Chi tiết:
Em xem trục hoành là trục tháng; trục tung là trục giá của mặt hàng
Nếu tháng 1 giá là 100000 thì tháng 2 giá chỉ còn 95000
Gọi phương trình đường thẳng biểu diễn giá tiền theo tháng là : y = a x + b
=> \(\hept{\begin{cases}100000=a.1+b\\95000=a.2+b\end{cases}}\)
=> a = -5000
Lời giải:
Khi \(x\neq 1\) thì hàm \(f(x)\) luôn là hàm sơ cấp xác định nên $f(x)$ liên tục tại mọi điểm \(x\neq 1\).
Do đó để hàm liên tục trên \(\mathbb{R}\Rightarrow \) chỉ cần xác định $a$ để hàm liên tục tại điểm $x=1$ là đủ.
Để $f(x)$ liên tục tại $x=1$ thì:
\(\lim_{x\to 1}f(x)=f(1)\)
\(\Leftrightarrow \lim_{x\to 1}\frac{x^3-4x^2+3}{x-1}=a+\frac{5}{2}\)
\(\Leftrightarrow \lim_{x\to 1}\frac{(x-1)(x^2-3x-3)}{x-1}=a+\frac{5}{2}\)
\(\Leftrightarrow \lim_{x\to 1}(x^2-3x-3)=a+\frac{5}{2}\)
\(\Leftrightarrow -5=a+\frac{5}{2}\Leftrightarrow a=\frac{-15}{2}\)
Đáp án B
a: Gọi số học sinh là x
Theo đề, ta có: \(x\in BC\left(16;28\right)\)
mà 100<=x<=150
nên x=112