K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
5 tháng 6 2024

Không bạn nhé 

Số không âm là những số >=0 nhé bạn

Còn số dương là những số > 0 

Nên không thể coi số không âm là số dương được còn thiếu 0 nữa bạn nhé.

 

29 tháng 12 2021

A

29 tháng 12 2021

đúng nhá

8 tháng 5 2018

Sai vì còn có các số vô tỉ không là số hữu tỉ dương cũng không là số hữu tỉ âm.

18 tháng 4 2017

: Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0

20 tháng 7 2017

Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.

Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm

25 tháng 5 2017

Trong các câu sau, câu nào đúng, câu nào sai :

a) Số hữu tỉ âm nhỏ hơn số hữu tỉ dương. Đúng

b) Số hữu tỉ âm nhỏ hơn số tự nhiên. Đúng

c) Số 0 là số hữu tỉ dương. Sai

d) Số nguyên âm không phải là số hữu tỉ âm. Sai

e) Tập hợp Q gồm các số hữu tỉ dương và các số hữu tỉ âm. Sai

25 tháng 5 2017

a) Đúng

b)Đúng

c)Sai

d)Sai

e)Sai

7 tháng 7 2016

a) Đ

b) Đ

c) S

d) S

e) Thiếu (chắc là sai)

7 tháng 7 2016

a) đúng

b) đúng

c) sai

d) sai

e) sai 

18 tháng 4 2018

a. Số hữu tỉ âm nhỏ hơn số hữu tỉ dươg. Đúng

b. Số hữu tỉ âm nhỏ hơn số tự nhiên. Đúng

c. Số 0 là số hữu tỉ dương. Sai

d. Số nguyên âm không phải là số hữu tỉ âm. Sai

e. Tập hợp Q gồm các số hữu tỉ hữi tỉ dương và các sô hữu tỉ âm. Sai

16 tháng 6 2018

a đúng.

b đúng.

c sai.

d sai.

e đúng.

2 tháng 3 2017

a. Số hữu tỉ âm nhỏ hơn số hữu tỉ dương. Đúng

b. Số hữu tỉ âm nhỏ hơn số tự nhiên. Đúng

c. Số 0 là số hữu tỉ dương. Sai

Vì số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.

d. Số nguyên âm không phải là số hữu tỉ âm. Sai

Các số nguyên âm a luôn viết được dưới dạng: Giải sách bài tập Toán 7 | Giải sbt Toán 7 . Do đó, số nguyên âm có là số hữu tỉ âm.

e. Tập hợp Q gồm các số hữu tỉ dương và các số hữu tỉ âm. Sai

Vì tập hợp Q gồm các số hữu tỉ dương, các số hữu tỉ âm và số 0.

12 tháng 9 2021

Ouuuuuuu

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

1 tháng 9 2021

Cả 3 đều đúng ^^

a.Đ

b.Đ

c.Đ

HT