Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)
Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)
=> \(-5⋮x-5\)
=> x - 5 \(\in\)Ư(-5)
=> \(x-5\in\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{6;11;4;0\right\}\)
Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ
b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)
Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)
=> \(13⋮x-5\)
=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)
=> \(x\in\left\{6;18;4;-8\right\}\)
Vậy khi \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ
c) Ta có C = \(\frac{x-3}{2x}\)
=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)
Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)
Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì C là số hữu tỉ
1/ a/\(-\frac{7}{18}=\left(-\frac{7}{2}\right)\left(\frac{1}{9}\right)\)
b/\(-\frac{7}{18}=\left(-\frac{7}{9}\right):2\)
2/
a/\(\frac{7}{15}\cdot\left(-\frac{3}{8}-\frac{3}{7}\right)=\frac{7}{15}\cdot\left(-\frac{45}{56}\right)=-\frac{3}{8}\)
b/\(\left(-\frac{3}{4}+\frac{2}{5}\right):\frac{3}{7}+\left(\frac{3}{5}+-\frac{4}{4}\right):\frac{3}{7}\)
\(=\left(-\frac{7}{20}\right):\frac{3}{7}+\left(-\frac{2}{5}\right):\frac{3}{7}\)
\(=\left(-\frac{49}{60}\right)+\left(-\frac{14}{15}\right)=-\frac{7}{4}\)
c/\(\frac{2}{3}\cdot\left(-\frac{5}{2}\right)+\frac{10}{15}\cdot\left(-\frac{3}{7}\right)-\frac{2}{3}\cdot\left(-\frac{5}{3}\right)\)
\(=\frac{2}{3}\cdot\left(-\frac{5}{2}-\frac{3}{7}+\frac{5}{3}\right)=-\frac{53}{63}\)
3/
\(2-\left(3-x\right)=-\frac{3}{2}\)
\(2-3+x=-\frac{3}{2}\)
\(x=-\frac{3}{2}+3-2=-\frac{1}{2}\)
4/
a/ Ta có 2 trường hợp:
TH1: \(x-3,5=7,5\)
\(x=7,5+3,5=11\)
TH2: \(x-3,5=-7,5\)
\(x=-7,5+3,5=-4\)
b/ Ta có 2 trường hợp:
TH1:\(x-0,4=3,6\)
\(x=4\)
TH2: \(x-0,4=-3,6\)
\(x=-3.2\)
c/ Ta có 2 trường hợp:
TH1:\(x+\frac{4}{5}=\frac{3}{2}\)
\(x=\frac{7}{10}\)
TH2:\(x+\frac{4}{5}=-\frac{3}{2}\)
\(x=-\frac{32}{10}\)
Đặt: \(A=|x-a|+|x-b|+|x-c|+|x-d|\)
Đặt: \(B=|x-a|+|x-d|\)
Ta có: \(B=|x-a|+|x-d|=|x-a|+|d-x|\)
Và: \(B\ge|x-a+d-x|=d-a\)
\(\Rightarrow Min_B=d-a\)
Đạt được \(\Leftrightarrow\left(x-a\right)\left(d-x\right)\ge0\)
Giải ta được: \(a\le x\le d\left(1\right)\)
Đặt \(C=|x-b|+|x-c|\)
\(C=|x-b|+|c-x|\ge|x-b+c-x|\)
\(\Rightarrow C\ge c-b\)
\(\Rightarrow Min_C=c-b\Leftrightarrow\left(x-b\right)\left(c-x\right)\ge0\)
Giải ra được: \(b\le x\le x\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow Min_A=d-a+c-b\)
Dấu " = " xảy ra \(\Leftrightarrow b\le x\le c\)
A)\(-\frac{7}{20}=\frac{1}{10}.\left(-\frac{7}{2}\right)\)
B)
a) Để `x/7` là số hữu tỉ thì \(x\in Z\)
b) Để `5/x` là số hữu tỉ thì \(x\in Z,x\ne0\)
c) Để `-5/(2x)` là số hữu tỉ thì \(2x\in Z\Rightarrow x\in Z,x\ne0\)
\(\dfrac{x}{7}\text{ là số hữu tỉ nếu }x\text{ là số nguyên}\)
\(\dfrac{5}{x}\) là số hữu tỉ nếu x là số nguyên khác 0
\(-\dfrac{5}{2x}\) là số hữu tỉ nếu x là số nguyên khác 0