K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Số hữu tỉ là số được viết dưới dạng phân số a/b với: a, b ∈ Z, b ≠ 0

Chọn đáp án B

4 tháng 1 2022

D

4 tháng 1 2022

 D.a , b ϵ Z , b≠0

5 tháng 3 2020

đúng rồi bạn

đúng rùi bn ơi

a,b ∈ Z,b ≠ 0a,b ∈ Z,b ≠ 0  

chúc bn học tốt

21 tháng 12 2021

Câu 6: 

=x8

21 tháng 12 2021

giải ciup1 mik mấy câu kia lun ah

 

CÂU LẠC BỘ TOÁN HỌC CHỦ NHIỆM: PHAN NGỌC THANH TRÂM ĐỀ BÀI: I. PHẦN LÝ THUYẾT: 1. Số hữu tỉ Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\) 2. Biểu diễn số hữu tỉ trên trục số Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó. 3. So sánh số hữu...
Đọc tiếp

CÂU LẠC BỘ TOÁN HỌC

CHỦ NHIỆM: PHAN NGỌC THANH TRÂM

ĐỀ BÀI:

I. PHẦN LÝ THUYẾT:

1. Số hữu tỉ

Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

2. Biểu diễn số hữu tỉ trên trục số

Mỗi số hữu tỉ được biểu diễn bởi một điểm trên trục số và không phụ thuộc vào cách chọn phân số xác định nó.

3. So sánh số hữu tỉ

Để so sánh hai số hữu tỉ \(x,y\) ta làm như sau:

- Viết \(x,y\) dưới dạng phân số cùng mẫu dương.

\(x = \dfrac{a}{m} ; y = \dfrac{b}{m} ( m>0)\)

- So sánh các tử là số nguyên \(a\) và \(b\)

Nếu \(a> b\) thì \(x > y\)

Nếu \(a = b\) thì \(x=y\)

Nếu \(a < b\) thì \(x < y\).

4. Chú ý

- Số hữu tỉ lớn hơn \(0\) gọi là số hữu tỉ dương

- Số hữu tỉ nhỏ hơn \(0\) gọi là số hữu tỉ âm

- Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

II. PHẦN BÀI TẬP:

A. Trắc nghiệm:

Câu 1: Định nghĩa số hữu tỉ?

A. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

B. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb Z, b = 0\) và được kí hiệu là \(\mathbb Q\)

C. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb N, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

D. Số hữu tỉ là số có thể viết dưới dạng \(\dfrac{a}{b}\) với \(a, b \in \mathbb R, b \ne 0\) và được kí hiệu là \(\mathbb Q\)

Câu 2: Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(\dfrac{3}{-4}\)

A.\(- \dfrac{12}{15}\)

B. \(- \dfrac{20}{8}\)

C. \(-\dfrac{18}{12}\)

D. \(-\dfrac{15}{20}\)

Câu 3: Tập hợp số hữu tỉ được kí hiệu là:

A. \(\mathbb Q\)

B. \(\mathbb N\)

C. \(\mathbb R\)

D. \(\mathbb Z\)

Câu 4: Khẳng định nào sau đây là đúng:

A. Số \(0\) không là số hữu tỉ dương

B Số \(0\) không là số hữu tỉ âm

C. Số \(0\) không là số hữu tỉ dương, cũng không là số hữu tỉ âm

D. Số \(0\) là số hữu tỉ

Câu 5: Cách viết nào sau đây là đúng:

A. \(\dfrac{3}{2} \in \mathbb Q\)

B. \(\dfrac{2}{3} \in \mathbb Z\)

C. \(-\dfrac{9}{2} \notin \mathbb Q\)

D. \(-6 \in \mathbb N\)

Câu 6: Số nào sau đây là số hữu tỉ dương:

A.\(\dfrac{-2}{-3}\)

B. \(\dfrac{-2}{5}\)

C. \(\dfrac{-5}{15}\)

D. \(\dfrac{-2}{15}\)

II.TỰ LUẬN:

Câu 1: So sánh các số hữu tỉ:

a) \(x = \dfrac{2}{-7}\) và \(y = \dfrac{-3}{11}.\)

b) \(x = \dfrac{-213}{300}\) và \(y = \dfrac{18}{-25}.\)

c) \(x = -0,75\) và \(y = \dfrac{-3}{4}.\)

Câu 2:

a) Biểu diễn các số hữu tỉ sau trên trục số: \(\dfrac{2}{5};\dfrac{{- 4}}{5};\dfrac{7}{5}\)

b) Hãy sắp xếp các số hữu tỉ sau theo thứ tự tăng dần: \(\dfrac{9}{{11}};\dfrac{{ - 30}}{{ - 40}};0;\dfrac{{ - 14}}{{18}};\dfrac{{ - 12}}{{ - 8}}\)

Câu 3: Cho số hữu tỉ \(x=\dfrac{a - 4}{5}\), với giá trị nào của a thì:

a) x là số dương?

b) x là số âm?

c) x không là số dương cũng không là số âm?

Câu 4: Cho số hữu tỉ \(x=\dfrac{a + 17}{a}\) ( \(a ≠ 0\) ). Với giá trị nguyên nào của a thì x là số nguyên?

Sưu tầm và biên soạn: PCN: Nguyễn Thành Trương




2
5 tháng 8 2019

Má ơi con đăng rồi

5 tháng 8 2019

:v

13 tháng 10 2023

Bạn An phát biểu sai vì 0 là số hữu tỉ(vì \(0=\dfrac{0}{1}\))

Bạn Bình phát biểu sai vì phải thêm điều kiện \(b\ne0\) nữa thì \(\dfrac{a}{b}\) mới là số hữu tỉ

Bạn Chi nói đúng vì tất cả các số nguyên a đều viết được dưới dạng \(\dfrac{a}{1}\) nên chúng là số hữu tỉ

15 tháng 8 2016

Mình làm câu a

\(Để\frac{a}{b}< \frac{a+c}{b+d}\) thì a(b+d) < b(a+c) ↔ ab + ad , ab + bc ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)

\(Để\frac{a+c}{b+d}< \frac{c}{d}\) thì (a+c).d < (b+d).c ↔ ad + cd < bc + cd ↔ ab < bc ↔ \(\frac{a}{b}< \frac{c}{d}\)

15 tháng 8 2016

nhân chéo thôi

31 tháng 8 2017

Trong sách có ghi như thế mà dĩ nhiên là đúng rồilimdim