Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em hãy xem bài giải ở sách bài tập toán 6 tập 1, bài 196 trang 30
Gọi x (học sinh) là số học sinh cần tìm (x ∈ ℕ và x < 200)
Do khi xếp hàng 4 thừa 3, hàng 5 thừa 4, hàng 6 thừa 5 nên x + 1 BC(4; 5; 6)
Do khi xếp hàng 7 thì vừa đủ nên x ⋮ 7
Do x ∈ ℕ ⇒ x + 1 > 0
Ta có:
4 = 2²
5 = 5
6 = 2.3
⇒ BCNN(4; 5; 6) = 2².3.5 = 60
⇒ x + 1∈ BC(4; 5; 6) = B(60) = {60; 120; 180; 240; ...}
⇒ x ∈ {59; 119; 179; 239; ...}
Lại có x ⋮ 7
⇒ x ∈ B(7) = {0; 7; 14; ...; 112; 119; 126; ...; 196; ...}
⇒ x = 119
Vậy số học sinh cần tìm là 119 học sinh
Gọi số học sinh khối 6 của trường đó là x ( x \(\in\)N* ) và 3 < x < 400
Theo đề bài ta có : x - 3 \(⋮\)10 ; x - 3 \(⋮\)12 ; x - 3 \(⋮\)15 và 3 < x < 400
=> ( x - 3 ) \(\in\)BC(10, 12, 15) và 3 < x < 400
10 = 2 . 5
12 = 22 . 3
15 = 3 . 5
BCNN(10, 12, 15) = 22 . 3 . 5 = 60
BC(10, 12, 15) = B(60) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; ... }
Vì ( x - 3 ) \(\in\)BC(10, 12, 15) và 3 < x < 400
=> ( x - 3 ) = { 0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ; ... }
=> x = { 3 ; 63 ; 123 ; 183 ; 243 ; 303 ; 363 ; ... }
Vì 3 < x < 400 và x \(⋮\)11 => x = 363
Vậy số học sinh khối 6 của trường đó là 363 học sinh