K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

Gọi h/s giỏi, khá, TB củ khối 7 là: a; b; c (em) (a, b, c > 0)

Theo đề bài ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và b + c - a = 180 (em)

Asp dụng tính chất của dãy tỉ số = nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=b+c-a=30\)

\(\Rightarrow a=2.30=60\)

\(\Rightarrow b=3.30=90\)

\(\Rightarrow c=5.30=150\)

Vậy: Số h/s giỏi, khá, TB của khối 7 là: 60 em.

                                                               90 em.

                                                               150 em.

30 tháng 11 2017

số học sinh giỏi là 36hs

số học sinh khá là 54 hs

số học sinh trung bình là 90 hs

30 tháng 11 2017

mình đã hỏi bạn ấy và bạn ấy bổ sung đề bài lần lượt với 2 : 3 : 5 

Gọi số học sinh giỏi , khá , trung bình lần lượt là a , b , c 

Theo đề bài ta có :

\(a:b:c=2:3:5\)

\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và b + c - a = 180

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)

\(\Rightarrow\)\(a=30.2=60\)

\(\Rightarrow\)\(b=30.3=90\)

\(\Rightarrow\)\(c=30.5=150\)

Vậy bạn tự kết luận

30 tháng 11 2017

trang này rất hay

21 tháng 10 2016

Gọi số học sinh giỏi, khá, trung bình của khối 7 theo thứ tự là a, b và c.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)

\(\left[\begin{array}{nghiempt}\frac{a}{2}=30\\\frac{b}{3}=30\\\frac{c}{5}=30\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=30\times2\\b=30\times3\\c=30\times5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=60\\b=90\\c=150\end{array}\right.\)

21 tháng 10 2016

Giải:

Gọi số học sinh giỏi, khá, trung bình lần lượt là a, b, c ( a,b,c\(\in\)N* )

Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và b + c - a = 180

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\)

+) \(\frac{a}{2}=30\Rightarrow a=60\)

+) \(\frac{b}{3}=30\Rightarrow b=90\)

+) \(\frac{c}{5}=30\Rightarrow c=150\)

Vậy khối 7 có 60 học sinh giỏi

90 sinh khá

150 học sinh trung bình

 

AH
Akai Haruma
Giáo viên
11 tháng 11 2021

Lời giải:

Gọi số hs giỏi, khá, trung bình lần lượt là $a,b,c$

Theo bài ra ta có:

$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$

$b+c-a=180$

Áp dụng TCDTSBN:

$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30$

$\Rightarrow a=2.30=60; b=3.30=90; c=5.30=150$

Vậy số hsg là $60$ em.

 

gọi số học sinh giỏi

,khá ,trung bình lần lượt là x, y, z (x,y,z thuộc n*)

theo đề bài ta có:

x/2 , y/3 ,z/5 và (y+z)-x

áp dụng t/c của dãy tỉ số bằng nhau ta có:

x/2, y/3 ,z/5=y+z-x/2+5-3=180/4=45

+>x/2=45 suy ra x=90

+>y/3=45=>y=135

+>z/5=45=>z=225

vậy số h/s giỏi , khá ,tb lần lượt là 90,135,225

Gọi số học sinh giỏi, khá. TB khối 7 là \(a;b;c\left(a;b;c\ne0\right)\)

Vì số học sinh giỏi,  khá. TB khối 7 lần lượt tỉ lệ với 2 ; 3 và 5 \(\Leftrightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\left(1\right)\)

Mà tổng số học sinh khá và TB hơn học sinh giỏi 180 em \(\Leftrightarrow b+c-a=180\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{b+c-a}{3+5-2}=\frac{180}{6}=30\). Từ đó ta suy ra được

\(a=30.2=60\)          \(b=30.3=90\)          \(c=30.5=150\)

Vậy số học sinh giỏi, khá và trung bình khối 7 lần lượt là 60 ; 90 và 150 em

16 tháng 12 2021

C

16 tháng 12 2021

có làm thì mới có ăn ok

trả lại câu nói cho bn

22 tháng 12 2021

Gọi số học sinh giỏi, khá,  trung bình lấn lượt là a,b,c(a,b,c>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{5}=\dfrac{b+c-a}{2+6-5}=\dfrac{180}{3}=60\)

\(\dfrac{a}{2}=60\Rightarrow a=120\\ \dfrac{b}{6}=60\Rightarrow b=360\\ \dfrac{c}{5}=60\Rightarrow c=300\)

22 tháng 12 2021

số hs giỏi 120 em

số hs khá 360 em

số hs tb 300 em

17 tháng 9 2021

Gọi số học sinh giỏi, khá, trung bình lần lượt là x; y; z (x; y; z\(\in\)N*)

=>\(\frac{x}{2}\)\(\frac{y}{3}\)\(\frac{z}{5}\)

Áp dụng t/c DTSBN, ta có:

=>\(\frac{x}{2}\)\(\frac{y}{3}\)\(\frac{z}{5}\)\(\frac{y+z-x}{3+5-2}\)\(\frac{180}{6}\)=30

=> x=60

y= 90

z= 150

Vậy ...

22 tháng 2 2023

tại sao lại chia vậy mngười chx hiểu?