Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{9}{25}\right)^{-x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^6\)
\(=>-2x=6\)
\(=>x=-3\)
câu 2.
\(x^2-xy=-18\)
\(=>x\left(x-y\right)=-18\)
\(=>3x=-18\)
\(=>x=-6\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(=\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(=\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=15\)
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow\frac{5}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
Ủng hộ mk nha ^_^
Vì: | 5x - 3 | \(\ge0\)
\(\left(\frac{1}{2}y-27\right)^{108}\ge0\)
( 37x + 2 )10 \(\ge0\)
Để \(\left|5x-3\right|+\left(\frac{1}{2}y-27\right)^{108}+\left(37x+2\right)^{10}=0\)
<=> | 5x - 3 | = 0
5x = 3
x = 3/5
<=> \(\left(\frac{1}{2}y-27\right)^{108}=0\) khi \(\frac{1}{2}y-27=0\)
1/2y = 27
y = 54
<=> ( 37x + 2 )10 = 0
37x + 2 = 0
37x = -2
x = -2/37
KL: x,y,x = ........................................
Bài 1:
Vì vế trái dương \(\Rightarrow\) x \(\ge\) 0
Xét 2 TH:
TH1: 2x + 1 + 1 - x = 5x với 0 \(\le\) x \(\le\) 1
\(\Rightarrow\) x + 2 = 5x
\(\Rightarrow\) 4x = 2
\(\Rightarrow\) x = \(\frac{1}{2}\) (TM)
TH2: 2x + 1 + x - 1 = 5x với x > 1
\(\Rightarrow\) 3x = 5x
\(\Rightarrow\) 2x = 0
\(\Rightarrow\) x = 0 (KTM)
Vậy x = \(\frac{1}{2}\)
Chúc bn học tốt! (Ko chắc lắm đâu)
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
Ể? \(x^2+x+1=0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(VL\right)\) rồi mà SP.