Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)
thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)
A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)
Mà \(0<\)\(x-4\le4\)
Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)
\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0<\sqrt{x-4}\)\(<2\)
Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)
\(+\sqrt{x-4}\ge2\)
\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)
Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)
\(\Rightarrow A\ge2.4=8\)
Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)
Vậy GTNN của A là 8 khi x = 8.
`B=(x+sqrtx+5)/(sqrtx+1)=(sqrtx(sqrtx+1)+4)/(sqrtx+1)=sqrtx+4/(sqrtx+1)=[(sqrtx+1)+4/(sqrtx+1)]-1>=2\sqrt((sqrtx+1). 4/(sqrtx+1))-1=3`
Dấu "=" xảy ra `<=>x=1`
Vậy `B_(min)=3<=>x=1`
ta có x+y=\(\sqrt{10}\)=>(x+y)^2=10
A=(x^4+1)(y^4+1)
=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2
=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]
=x^4.y^4+1+(10-2xy)-2x^2.y^2
=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2
=x^4.y^4+101-40xy+2.x^2.y^2
=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45
=(x^2.y^2-4)^2+10.(xy-2)^2+45\(\ge\)0
dấu = xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)
vậy Min A=45
\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)là nghiệm pt x^2-\(\sqrt{10}\)x+2
=>\(\Delta\)=(-\(\sqrt{10}\))^2-4.2=2>0
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --