Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là aa.
Ta có aa chia cho 8, 98,9 và 1212 được số dư lần lượt là 6, 76,7 và 1010.
Suy ra a+2a+2 chia hết cho 8, 98,9 và 1212.
Để aa nhỏ nhất thì a + 2 =a+2= BCNN(8,9,12) = 72(8,9,12)=72.
Vậy, a = 72 - 2 = 70a=72−2=70.
*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....
*Sau đó ta chia 1010 thành 1009 nhóm
*Theo nguyên lý Dirichlet ta có 2 trường hợp
Ta có ĐPCM
Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn
Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9
Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!
Ta phân tích 9999 thành 1111 x 9
Trong bốn đáp án Violympic đưa ra thì chỉ có duy nhất 198 là chia hết cho 9
=> Có ít nhất 198 chữ số 1
k cho mình nha?
các bạn ơi có 4 đáp án đó là:
A. 196 B. 198 C. 199 D. 200
thế thì chọn đáp án nào , ko thể là 9999 được đâu