Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = 4q+3=9p+5 (p, q là thương trong hai phép chia)
=> a + 13 = 4(q+4)=9(p+2)
=> a+13 là bội của 4 và 9
Mà (4;9) = 1 => a+13BC(36)
=> a + 13 = 36k (k)
=> a = 36k – 13 =36(k-1) + 23
Vậy a chia 36 dư 23.
Gọi số phải tìm là x, ta có 2x-1 chia hết cho 5,7,9,11
=> 2x-1 là bội chung của 5,7,9,11
BCNN(5;7;9;11)=3465
Biến đổi và đưa ra x nhỏ nhất có 9 chữ số:100001633; x lớn nhất có 9 chữ số là:999997268
a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1
Khi đó
\(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)
\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)
\(=4\left(ab+bc+ca+a+b+c\right)+3\)
Vậy thì mn + np + pm chia 4 dư 3.
b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:
Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4
Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.
Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.
cách giải
lời giải luôn
1/ a=5k+2; b=5n+3
(ab là a nhân b nếu là ab xẽ khác)
(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1
2/ a=7k+3
a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2