Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 33 đồng dư 1 (mod 13)
=>(33)668=32004 đồng dư 1 (mod 13)
=>32004.3 đồng dư 1.3=3 (mod 13)
46 đồng dư 1 (mod 13)
=>(46)334=42004 đồng dư 1 (mod 13)
=>42004.4 đồng dư 1.4=4 (mod 13)
=>A đồng dư 3+4=7 (mod 13) hay A chia 13 dư 7
Ta có:
_ 7762 đồng dư 1 (mod 3)
=>(7762)388=776776 đồng dư 1 (mod 3)
_ 777 chia hết cho 3 => 777777 chia 3 dư 0
_778 đồng dư 1 (mod 3)
=>778778 đồng dư 1 (mod 3)
Vậy A đồng 1+0+1=2 (mod 3) hay A chia 3 dư 2
c1 chắc có lộn đề r
c2:Gọi 2 số cần tìm lần lượt là a,b
Ta có: 9/11a=6/7b
a+b=258 nên a=258-b
=>9/11*(258-b)=6/7b
2322/11-9/11b=6/7b
6/7b+9/11b=2322/11
66/77+63/77b=2322/11
129/77b=2322/11
b=2322/11:129/77=126
nên a=258-126=132
Vậy 2 số cần tìm lần lượt là 132;126
Bạn xem cách điền của mình nhé:
Giải:
Phép chia 5 cho 7 được viết là: \(5:7\)
Phép chia 1,7 cho 3,12 được viết là: \(1,7:3,12\)
Phép chia 15cho 34 được viết là: \(\frac{1}{5}:\frac{3}{4}\)
Phép chia −314cho 5 được viết là: \(-3\frac{1}{4}:5\)
Phép chia số a cho số b (b ≠≠0) được viết là: \(a:b\) (hoặc \(\frac{a}{b}\))
Chúc bạn học tốt!
Phép chia 5 cho 7 được viết là\(\frac{5}{7}\)
Phép chia 1,7 cho 3,12 được viết là:1,7:3,12
Phép chia \(\frac{1}{5}\) cho \(\frac{3}{4}\) được viết là:\(\frac{1}{5}:\frac{3}{4}\)
Phép chia \(-\frac{1}{4}\) cho 5 được viết là:\(-3\frac{1}{4}\):5
Phép chia số a cho số b (b ≠0) được viết là:a:b(\(\frac{a}{b}\))
a: Gọi mẫu là x
Theo đề, ta có:
\(\dfrac{2}{5}< \dfrac{4}{x}< \dfrac{2}{3}\)
=>10>x>6
=>\(x\in\left\{9;8;7\right\}\)
b: Phần phân số là 1-9/25=16/25
Phần nguyên là 125x9/25=45
Vậy: Hỗn số cần tìm là \(45\dfrac{16}{25}\)
Bài 3:
Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)
TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)
\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)
TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)
\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)
Vậy ....
Bài 2:
\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)
\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow A=1-\frac{1}{2009}\)
\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)
\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)
\(1\frac{1}{3}=\frac{4}{3}\)
Phân số chỉ số hàng đã chuyển đi so với số hàng trong kho là :
\(\frac{3}{7}\cdot\frac{4}{3}=\frac{4}{7}\)(số hàng trong kho lúc đầu)
Phân số chỉ số hàng tăng lên là :
\(\frac{4}{7}-\frac{3}{7}=\frac{1}{7}\)(số hàng trong kho lúc đầu)
Số hàng trong kho lúc đầu là :
\(101:\frac{1}{7}=707\)(tấn)
1963 chia 7 dư 3
\(\Rightarrow\)19631964 chia 7 dư 31964
Ma 31964 = 9982
9 chia 7 dư 2\(\Rightarrow\)9982 chia 7 dư 2982
Mà 2982=2.8327
8 chia 7 dư 1 \(\Rightarrow\) 8327 chia cho 7 dư 1327=1
\(\Rightarrow\) 2.8327 chia cho 7 dư 2
\(\Rightarrow\) 19631964 chia cho 7 dư 2