Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm tương tự
bài 1: Cmr chu so tan cung cua cac so tu nhien n va n^5 la nhu nhau.
bài 2: phan h da thuc sau thanh nhan tu: x^3(x^2-7)^2-36x . cmr phan thuc nay chia het cho 7 vs moi n thuoc Z
Bài làm
Bai 1 :
Xét
Vì chia hết cho 10 (h 5 số tự nhiên liên tiếp chia hết cho 2 và cho 5
chia hết cho 10
chia hết cho 10
\Rightarrow A có chữ số tận cùng là 0 Hay và có chữ số tận cùng giống nhau.
Bài 2
Vì phân thức trên là tích của 7 số tự nhiên liên tiếp nên nó chia hết cho 7
\(x^7-14x^5+49x^3-36x\)
= \(x^3\left(x^4-14x^2+49\right)-36x\)
= \(x^3\left(x^2-7\right)^2-36x\)
=\(x\left[\left(x\left(x^2-7\right)\right)^2-36\right]\)
=\(x\left[\left(x\left(x^2-7\right)-6\right)\left(x\left(x^2-7\right)+6\right)\right]\)
\(a)\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\\ \Leftrightarrow4x^2-14x+10x-35-\left(16x^2+24x-9\right)=16\\ \Leftrightarrow-12x^2-28x-44=16\\ \Leftrightarrow-12x^2-28x-60=0\\ \Leftrightarrow3x^2+7x+15=0\\ \Delta=b^2-4ac=7^2-4.3.15=-131< 0\)
Vậy phương trình vô nghiệm
\( b)(8x^2 + 3)(8x^2 - 3) - (8x^2 - 1)^2 = 22\)
\(\Leftrightarrow64x^4-9-\left(64x^4-16x^2+1\right)=22\\ \Leftrightarrow-10+16x^2=22\\ \Leftrightarrow16x^2=32\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\pm\sqrt{2}\)
Vậy \(x=\sqrt{2},x=-\sqrt{2}\)
\(c)49x^2+14x+1=0\\ \Leftrightarrow\left(7x+1\right)^2=0\\ \Leftrightarrow7x+1=0\\ \Leftrightarrow7x=-1\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
Vậy \(x=-\dfrac{1}{7}\)
\(\Leftrightarrow\)\(x=-\dfrac{1}{7}\)
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)
b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)
\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)
\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)
6x^3 + x + 4 = 11x^2
<=>6x3-11x2+x+4=0
<=>6x3+3x2-14x2-7x+8x+4=0
<=>3x2(2x+1)-7x(2x+1)+4(2x+1)=0
<=>(2x+1)(3x2-7x+4)=0
<=>(2x+1)(3x2-3x-4x+4)=0
<=>(2x+1)(3x-4)(x-1)=0
<=>2x+1=0 hoặc 3x-4=0 hoặc x-1=0
<=>x\(\in\){-1/2;1;4/3}
b)x^6 - 14x^4 + 49x^2 = 36
<=>x6-14x4+49x2-36=0
<=>x6-x4-13x4+13x2+36x2-36=0
<=>x4(x2-1)-13x2(x2-1)+36(x2-1)=0
<=>(x2-1)(x4-13x2+36)=0
<=>(x+1)(x-1)(x4-9x2-4x2+36)=0
<=>(x+1)(x-1)[x2(x2-9)-4(x2-9)]=0
<=>(x-1)(x+1)(x2
-9)(x2-4)=0
<=>(x-1)(x+1)(x+3)(x-3)(x+2)(x-2)=0
<=>x\(\in\){-3;-2;-1;1;2;3}
p/s: kham khảo
6x^3 + x + 4 = 11x^2
<=>6x3-11x2+x+4=0
<=>6x3+3x2-14x2-7x+8x+4=0
<=>3x2(2x+1)-7x(2x+1)+4(2x+1)=0
<=>(2x+1)(3x2-7x+4)=0
<=>(2x+1)(3x2-3x-4x+4)=0
<=>(2x+1)(3x-4)(x-1)=0
<=>2x+1=0 hoặc 3x-4=0 hoặc x-1=0
<=>x\(\in\){-1/2;1;4/3}
b)x^6 - 14x^4 + 49x^2 = 36
<=>x6-14x4+49x2-36=0
<=>x6-x4-13x4+13x2+36x2-36=0
<=>x4(x2-1)-13x2(x2-1)+36(x2-1)=0
<=>(x2-1)(x4-13x2+36)=0
<=>(x+1)(x-1)(x4-9x2-4x2+36)=0
<=>(x+1)(x-1)[x2(x2-9)-4(x2-9)]=0
<=>(x-1)(x+1)(x2-9)(x2-4)=0
<=>(x-1)(x+1)(x+3)(x-3)(x+2)(x-2)=0
<=>x\(\in\){-3;-2;-1;1;2;3}
phù.mệt
Bằng 18005168122313401