Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán về đồng dư thức:
9^2013 đồng dư với 9^504 (mod 21)
9^504 đồng dư với 9^126 (mod 21)
9^126 đồng dư với 15^14 (mod 21)
15^14 đồng dư với 15 (mod 21)
=> 9^2013 chia 21 dư 15
Bài toán về đồng dư thức :
9^2013 đồng dư với 9^504
9^504 đồng dư với 9^126
9^126 đồng dư với 15^14
15^14 đồng dư với 15
\(\Leftrightarrow\)9^2013 cia 21 dư 5
ta có 9 chia 4 dư 1 nên 9^2013 chia 4 dư 1^2013 hay 9^2013 chia 4 dư 1
9^2013 đồng dư với 9^504 theo mod 21
9^504 đồng dư với 9^126 theo mod 21
9^126 đồng dư với 15^14 theo mod 21
15^14 đồng dư với 15 theo mod 21
=> 9^2013 chia 21 dư 15
Cái này sử dụng phép đồng dư(lên lớp 9 mới học ), nếu bạn chưa học lớp 9 thì mình ra kết quả lun nha
Số dư là 15
Chúc bạn học tốt ^_^
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
\(n=9k+7\)
\(\Rightarrow n^3=\left(9k+7\right)^3=\left(9k\right)^3+3\left(9k\right)^2.7+3.9k.7^2+7^3\)
\(\left(9k\right)^3+3\left(9k\right)^2.7+3.9k.7^2⋮9\)
\(\Rightarrow7^3=343:9\)dư 1
\(\Rightarrow n^3:9\)dư 1
Cũng dễ ợt. Đùa tí! Tớ ko biết đâu.Hì........hì..........hí...........hí........... há.........há.......... hố...........hố......!
????????????????????!!!!!!!!!!!!!!!!!!..............................