Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải :
Mỗi số được tạo bởi các chữ số từ 0 đến 9 .
Ta gọi số chính phương có hai chữ số đó là : ab ( a khác 0 ; a và b < 10 )
a là số chính phương , b là số chính phương .
Mà các số chính phương có 1 chữ số là :
4 vì 4 = 22
9 vì 9 = 32
Vậy ab có thể bằng 49 hoặc 94 và ab cũng là số chính phương .
Trong hai số 49 và 94 số chính phương là : 49 ( vì 49 = 72 )
Suy ra ab = 49 .
Đáp số : 49 .
Số 49 là số chính phương của 7
số 4 trong 49 là chính phương của 2
số 9 trong 49 là chính phương của 3
đúng rồi nha
100% lun
ai qua thấy đúng ủng hộ, không phải vậy bạn có ý kiến khác tôi
Gọi số cần tìm là ab (a;b thuộc N;a #0;a,b nhỏ hơn hoặc bằng 9)
Tổng là : n^2
=)ab-ba=n^2
=)a.9+b.9=n^2
=)9.(a+b)=n^2
=)n^2 chia hết cho 9
Mà a>b>0=)(a-b) lớn nhất là 9-1=8
n^2=8.9=72=)n nhỏ hơn hoặc bằng 8
Rồi bạn thử các trường hợp từ 0 cho đén 8
Rồi có 2 trường hợp chọn được rồi bạn phân tích thành phép cộng của a+b
Mà ab và ba là 2 số nguyên tố =)Bạn loại các trường hợp không phải số nguyên tố rồi kết luận số cần tìm.
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
so 49 = 7 mu 2
4 = 2^2
9 = 3^2