K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

x(x + y) + y(x + y) = (x + y) . (x + y) = (x + y)2 = -45 + 5 = -40

Mà (x + y)2 > 0 nên không có cặp x;y nào thỏa mãn

1 tháng 1 2016

X(x+y)=-45(1)

Y(x+y)=5(2)

 Lấy (1) cộng (2), vế theo vế ta được:

X(x+y)+y(x+y)=-45+5=-40

=>(x+y)^2=-40

 Mà (x+y)^2 >/ 0;-40<0

=> ko có cặp (x,y) nào thỏa mãntick nhé

 

1 tháng 1 2016

Ta có:x(x+y)=-45 (x;y thuộc Z) 

=>x thuộc ước của -45

=>x thuộc ước của -45;-15;-9;-5;-3;-1;1;3;5;9;15;45

Ta có bảng:

x-45-15-9-5-3-113591545
x+y13591545-45-15-9-5-3-1
y461814141846-46-18-14-14-18-46
Kết luận CCCCCCCCCCCC

(C là chọn)

=>số cặp (x;y) là 12

Ta có y(x+y)=5

=>(làm như bài trên tìm được 4 cặp 

            

 

3 tháng 1 2016

x(x+y)=-45

y(x+y)=5

=>x(x+y)+y(x+y)=-45+5

(x+y)(x+y)=-40

(x+y)2=-40 mà (x+y)2>=0(với mọi x)

nên không có cặp số nào thỏa mãn đề

3 tháng 1 2016

tớ làm câu b nha , câu a xét nhìu trường hợp quá

4 tháng 1 2016

không có cặp giá trị thỏa mãn

 

4 tháng 1 2016

Không có cặp giá trị x;y thỏa mãn

25 tháng 12 2016

Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên

Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm

TH1: (2x-3)2=0 và |y-2|=1

\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)

Ta không xét đến |y-2|=1 nữa!

TH2: (2x-3)2=1 và |y-2|=0

  • \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
  • \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)

Vậy có 2 cặp x;y thỏa mãn là .........................

25 tháng 12 2016

\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)

\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)

Với x=1,2=>có y=2

với 1,3 không có x thỏa mãn

KL:

(xy)=(1,2); (2,2)

5 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)

\(\Rightarrow4y^2-4x^2=3y^2\)

\(\Rightarrow4y^2-3y^2=4x^2\)

\(\Rightarrow y^2=4x^2\)

Thế vào \(x^{10}.y^{10}=1024\), ta có:

\(x^{10}.\left(y^2\right)^5=1024\)

\(x^{10}.\left(4x^2\right)^5=1024\)

\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )

\(\Rightarrow x^{20}=1\)

\(\Rightarrow x=1;x=-1\)

\(\Rightarrow y=2;y=-2\)

Vậy có 2 cặp ( x ; y ) thỏa mãn.

 

5 tháng 8 2016

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )

\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)

\(2y^2=8x^2\)

\(y^2=\left(2x\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)

\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)

Với \(xy=2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Với \(xy=-2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Tóm lại ta có :

\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)