Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)
\(\Rightarrow4y^2-4x^2=3y^2\)
\(\Rightarrow4y^2-3y^2=4x^2\)
\(\Rightarrow y^2=4x^2\)
Thế vào \(x^{10}.y^{10}=1024\), ta có:
\(x^{10}.\left(y^2\right)^5=1024\)
\(x^{10}.\left(4x^2\right)^5=1024\)
\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )
\(\Rightarrow x^{20}=1\)
\(\Rightarrow x=1;x=-1\)
\(\Rightarrow y=2;y=-2\)
Vậy có 2 cặp ( x ; y ) thỏa mãn.
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )
\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)
\(2y^2=8x^2\)
\(y^2=\left(2x\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)
\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)
Với \(xy=2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
Với \(xy=-2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
Tóm lại ta có :
\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
Đây nhé: Câu hỏi của Trần Thị Thùy Trang - Toán lớp 7 - Học toán với OnlineMath
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên
Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm
TH1: (2x-3)2=0 và |y-2|=1
\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)
Ta không xét đến |y-2|=1 nữa!
TH2: (2x-3)2=1 và |y-2|=0
- \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
- \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)
Vậy có 2 cặp x;y thỏa mãn là .........................
\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)
\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)
Với x=1,2=>có y=2
với 1,3 không có x thỏa mãn
KL:
(xy)=(1,2); (2,2)
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm