Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
Ta có: \(\dfrac{2}{1}< \dfrac{1}{n}< \dfrac{4}{7}\)
\(\Rightarrow\dfrac{4}{2}< \dfrac{4}{4n}< \dfrac{4}{7}\)
\(\Rightarrow2< 4n< 7\)
\(\Rightarrow0,5< n< 1,75\)
Mà \(n\in N\)
\(\Rightarrow n=1\)
Vậy n = 1
\(\dfrac{2}{1}< \dfrac{1}{n}< \dfrac{4}{7}\)
\(\Rightarrow\dfrac{4}{2}< \dfrac{4}{4n}< \dfrac{4}{7}\)
\(\Rightarrow2< 4n< 7\)
\(\Rightarrow\dfrac{2}{4}< \dfrac{n}{4}< \dfrac{7}{4}\)
\(\Rightarrow0,5< n< 1,75\)
\(n\in N\Rightarrow n=1\)
=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)
=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)
=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.
\(3,=\left(\dfrac{13}{25}-\dfrac{38}{25}\right)+\left(\dfrac{14}{9}-\dfrac{5}{9}\right)=-1+1=0\\ 4,=\left(\dfrac{4}{9}\right)^5\cdot\left(\dfrac{9}{49}\right)^5=\left(\dfrac{4}{9}\cdot\dfrac{9}{49}\right)^5=\left(\dfrac{4}{49}\right)^5\\ 5,\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{x+y}{5+3}=\dfrac{2}{2}=\dfrac{x+y}{8}\Rightarrow x+y=8\\ 6,\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\Rightarrow2\text{ giá trị}\\ 7,=\dfrac{3^{10}\cdot2^{30}}{2^9\cdot3^9\cdot2^{20}}=2\cdot3=6\)
2/7<1/n<4/7 \(\Rightarrow\)4/14<4/4n<4/7\(\Rightarrow\)14>4n>7\(\Rightarrow\)\(\hept{\begin{cases}4n=8\\4n=12\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n=2\\n=3\end{cases}}\)
n=2 , 3