Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2-1=6y^2\)
Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)
\(\Rightarrow4\left(k^2+k\right)=6y^2\)
\(\Rightarrow2\left(k^2+k\right)=3y^2\)
Do 2 chẵn \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn
Mà y là SNT \(\Rightarrow y=2\)
Thay vào pt đầu:
\(x^2+1=6.2^2+2\Rightarrow x=5\)
Vậy (x;y)=(5;2)
Ta có: \(x^2-1=2y^2\)
Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ
⇒ x= 2k+1
Ta có: \(\left(2k+1\right)^2-1=2y^2\)
⇒ \(4\left(k^2+k\right)=2y^2\)
⇒\(2\left(k^2+k\right)=y^2\)
Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn
Mà y là số nguyên tố ⇒ y = 2
Ta lại có: \(x^2-1=2.2^2\)
⇒ \(x^2-1=8\)
⇒\(x^2=8+1=9\)
⇒ x= -3 hoặc 3
Vì x là số nguyên tố nên x =3
Vậy x=3, y=2
|(x - 23)(x + 12)| = 0
Th1: x - 23 = 0 => x = 23
Th2: x + 12= 0 => x= -12
|( x - 23)( x + 12)| =0
=> x-23=x+12 hoặc x-23=-x+12
sau đó gom x lại áp dugnj quy tắc chuyển vế là ra
Các cặp số nguyên x;y thỏa mãn là:
x | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 0 | -1 | -2 | -3 | -4 | -5 | 4 | 3 | 2 | 1 | 0 |
=> có 11 cặp, k chắc nữa
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)