Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
Sửa đề: cho a, b là các số nguyên thỏa mãn \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) .....
Giải: Ta có: \(\left(7a-21b\right)⋮7\) nên \(\left(7a-21b+5\right)\) không chia hết cho 7
Mà theo đề \(\left(7a-21b+5\right)\left(a-3b+1\right)⋮7\) suy ra \(\left(a-3b+1\right)⋮7\)
Lại có: \(\left(42a+14b+14\right)⋮7\) vì các số hạng đều chia hết cho 7
Do đó \(\left[\left(a-3b+1\right)+\left(42a+14b+14\right)\right]⋮7\) hay \(\left(43a+11b+15\right)⋮7\)
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
a . theo đề bài :
a + b = a .b = a : b
a . b = a : b => a .b .b = a => b^2 = a : a = > b = 1 hoặc b -1
Với b = 1 thì a . 1 = a + 1 = > a = a + 1 ( loại )
Với b = -1 thì a . -1 = a + -1 => -a = a + -1 => -2a = -1 => a = 1/2
b ,c tương tự nhe
a ) Theo bài ra ta có ;
a+ b = a.b = a : b
Với a . b = a : b => a .b. b = a => b^2 = a : a= > b^2 = 1 => b = 1 hoặc -1
(+) b = 1 => a. 1 = a + 1 => a = a+ 1 => 0a = 1 ( laoij )
(+) b = -1 => a.-1 = a + (-1) => -a = a- 1 => -2a = -1 => a= -1/2
VẬy b= -1 và a = 1/2
B) tương tự