Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Giá trị của x thỏa mãn
|x+2,37|+|y−5,3|=0
Để GTBT bằng 0 thì |x+2,37| = 0 và |y−5,3| = 0
-> x = -2,37 , y = 5,3
Vậy x = -2,37
Câu 2: Giá trị của y thỏa mãn
−|2x+\(\frac{4}{7}\)|−|y−1,37| = 0
-> |2x+\(\frac{4}{7}\) = 0 -> x = \(-\frac{2}{7}\)
-> |y−1,37| = 0 -> y = 1,37
Vậy y = 1,37
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{\left|x-5\right|}{\left|x-3\right|}=\frac{\left|x-1\right|}{\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{\left|x-3\right|-\left|x-3\right|}=\frac{\left|x-5\right|-\left|x-1\right|}{0}\)
Do đó không tồn tại x thỏa mãn.
Giá trị của x thỏa mãn:
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}.x-4}\)
\(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{2\left(\frac{3}{2}x-4\right)}\)
=> \(\left(\frac{1}{2}\right)^{x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=> \(x+4=3x-8\)
=> \(3x-8-x=4\)
=> \(2x-8=4\)
=> \(2x=12\)
=> \(x=\frac{12}{2}=6\)
\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{4}\right)^{\frac{3}{2}x-4}\)
=>\(\left(\frac{1}{2}\right)^{-x+4}=\left(\frac{1}{2}\right)^{3x-8}\)
=>-x+4=3x-8
<=>4x=12
<=>x=3
Vậy x=3
\(\left(\frac{1}{4}\right)^{\frac{3}{2}-4}=\left(\frac{1}{2}\right)^{2.\left(\frac{3}{2}-4\right)}=\left(\frac{1}{2}\right)^{-1}\)
; do đó -x + 4 = -1
=> -x = -1 - 4 = -5
=> x = 5
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7