K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 5b>3b

nên 5b-3b>0

=>2b>0

hay b>0

b: -12b>8b

nên -20b>0

hay b<0

c: -6b>=9b

nên -6b-9b>=0

=>b<=0

d: 3b<=15b

=>3b-15b<=0

=>-12b<=0

hay b>=0

lên mạng đi bạn 

làm Pascal khó lắm

22 tháng 4 2017

a) Ta có: 12 < 15. Để có bất đẳng thức

12a < 15a ta phải nhân cả hai vế của bất đẳng thức 12 < 15 với số a.

Để được bất đẳng thức cùng chiều thì a > 0

b) Vì 4 > 3 và 4a < 3a trái chiều. Để nhân hai vế của bất đẳng thức 4 > 3 với a được bất đẳng thức trái chiều thì a < 0

c) Từ -3 > -5 để có -3a > -5a thì a phải là số dương

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

28 tháng 10 2018

đề sai rồi.vd:5,-1,-2

13 tháng 3 2017

a)ta có 5>3. để có bất đẳng thức cùng chiều 5b>3b ta phải nhân hai vế của bất phương trình 5>3 cho số dương. Vậy b là số dương

b)ta có -12<8 để có bất đẳng thức ngược chiều -12b>8b ta phải nhân hai vế của bất phương trình -12<8 cho số âm. vậy b âm

c)ta có -6=< 9 nên để có bất đẳng thức ngược chiều -6b>=9b ta phải nhân hai vế của bất phương trình -6=<9 cho số âm. vậy b âm

d) ta có 3=<15 để có bất đẳng thức cùng chiều 3b=<15b ta phải nhân hai vế của bất phương trình 3=<15 cho số dương. Vậy b là số dương

mình chưa học bài này nên cách giải không biết có đúng không nhưng kết quả chắc đúngok

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok

26 tháng 7 2017

Vì 3 < 5 mà 3b  ≤  5b nên b là số không âm (tức b ≥ 0)